
Validation of Calibration Software by the Calibration Facility

Patrick Kershaw, Associate Software Engineer
Fluke Corporation, P.O. Box 9090 Everett, WA 98206

Abstract

Today, in the United States, regulatory agencies such as the Food and Drug Administration
(FDA), the Nuclear Regulatory Commission (NRC) and many others are moving toward tighter
controls and verification on the instruments and standards used to calibrate the field instruments.
To facilitate the increased traceability requirements, the various events and items which either
directly or indirectly enable the comparison of a known standard to Unit Under Test (UUT) are
divided into discreet steps. Prudent verification checks are then applied to each step.

Calibration software, such as MET/CAL, is a link in the calibration chain. Although there is
extensive testing at the software developer’s facility, it may be prudent to test the software after
installation on the user’s computer network. This would verify the installation was successful,
the software is compatible with the user’s hardware, and the software has the ability to deliver
accurate measurement records taken during a calibration verification or adjustment event to file
storage. This paper will discuss the testing which would be prudent, and will explore some of
the expectations of some regulatory agencies.

1. Introduction

1.1. Objective

This paper focuses primarily on interpreting the guidance and draft guidance which has
been promulgated by the U.S. Department of Health and Human Services, Food and Drug
Administration (FDA) as it applies to a process automation software such as the Fluke
Metrology Software. The principles presented fall into the category of good engineering
practices and are easily applied to any situation where a high degree of confidence is
required that software functionality meets internal process requirements and external
auditability requirements of outside regulatory agencies. Meeting these audit
requirements will also fulfill a major portion of ISO 9000 standards.

The published guidance is very flexible and thus somewhat vague. This paper is an
interpretation intended to assist the calibration lab during the validation of software and it
offers a tried method of developing and maintaining validation test plans. It is expected to
be used in conjunction with the published guidance of the applicable regulatory agencies.

Validation of Calibration Software by the Calibration Facility Page 2 of 14

1.2. Background
On June 1, 1997, medical device quality system regulation became effective which
included requirements for validation of software used in medical devices or the
automation of development processes of medical devices. This encompasses off-the-
shelf (OTS) software used to automate processes such as calibration and test device asset
management. Fluke’s MET/CAL calibration software and MET/TRACK asset
management software are examples of many software packages which fall into this
category.

The requirements to produce auditable records of software validation are published in the
Current Good Manufacturing Practices (GMPs or cGMPs) issued in the United States by
the FDA as the minimum requirements.i The cGMPs as they apply to software used in the
development of medical devices draw their regulatory authority from 21 CFR Part 820.
Most countries promulgate their own GMPs, but they are similar in nature.

The FDA, Center for Devices and Radiological Health is currently constructing a
“Guidance for the Industry” paper titled General Principles of Software Validation. This
guidance was distributed for comment purposes only on June 9, 1997, but it does reflect
in text principles which have been apparent in the FDA’s handling of OTS software.

What is evident in FDA guidance is acknowledgment of a fact which is not disputed by
those in the software development industry: Software made and tested without error
on one hardware platform and configuration may fail to work identically on
different hardware or with different configuration. While uncommon, this may
happen with two different pieces of hardware claiming to be compatible with the same
standard, such as the case of PC clones. There is an implied compatibility, but no
guaranteed compatibility with machines of different makes and configurations. The end
result is that, although extensive testing on many different platforms is performed for
most OTS software, there is the potential that software may not work with an untested
combination of hardware. Software validation by the end user is the only means of
ensuring proper operation in the environment in which it is to be used.

Finally, and what makes OTS software a challenge to validate, the software is very often
not configured in an identical manner to that envisioned by the developer. This is
especially true of software like the Fluke Metrology Software which allows a great deal of
user customization. This makes the criticality of individual automatic functions as they
apply to a given user impossible to evaluate by the developer, and thus it is important
that the end-user be involved in the development of the validation plan.

1.3. Paper Overview
This paper contains a macro view of the Software Development Life-Cycle as it pertains
to validating OTS software. It contains a micro view of the Analysis Phase where the
Validation Plan is actually developed. Finally, it provides a practical exercise in
developing a Validation Test Script on-site.

Validation of Calibration Software by the Calibration Facility Page 3 of 14

2. The Software Development Life-Cycle
There are numerous models of the software life-cycle which all differ subtly. The FDA
advocates that whatever software life-cycle model is in use, that it be documented and utilized in
the process of validating the software. For OTS software a typical cycle would probably include
planning, procurement, analysis, validation and implementation.

2.1. Planning Phase
During the planning phase, the general and some specific requirements of the software are
agreed upon. As indicated by the title general requirements, these should reflect the
major purposes which the software must fulfill. The specific requirements are the
individual functions which the software must perform to support the general
requirements. Particular mention should be made of automatic functions.

For example, in the case of asset management software such as MET/TRACK, a general
requirement might be that it provide a recall for assets which are due for calibration.
Specific requirements to support this general requirement might be the automatic function
of assigning the calibration due date based on the stored calibration period and the date of
the last calibration. Another specific requirement might be the ability to generate a report
of all assets which require calibration during the next week or month. There may be
dozens of specific requirements for each general requirement.

General and specific requirements should be documented so the performance of the
software versus its published requirements can be evaluated.

Information about the available products should be gathered at this time. This will help
when determining what is reasonable to expect from software which is not custom-made
for a specific site.

2.2. Procurement Phase
The Procurement Phase takes the place of the execution or development phase in user
developed software models. While the function of the Procurement Phase may be
intuitive, there are a few items to note:

Ensure the requirements which have been decided upon by the calibration lab are
understood by the software vendor, and allow the vendor to verify that the software
package will be able to meet the requirements. If the requirements cannot be met by OTS
software, the vendor may be able to offer alternative methods used in similar situations.

Determine the status of the Quality Assurance program of the software developer as well
as the ability of the software developer to support the calibration lab during the validation
process.

Validation of Calibration Software by the Calibration Facility Page 4 of 14

2.3. Analysis Phase
In the Analysis Phase, a working model is used where general requirements are
implemented and the remainder of the specific requirements of the software are
determined. The Validation Test Plan is then developed.

2.3.1. The Working Model
The OTS software is installed on a test platform and the person or persons who
will become the system experts will examine its capabilities and determine which
capabilities will be used to meet the general requirements set forth during the
planning stage. In the process, more specific requirements are defined which will
enable the software to perform its general function. All of the specific
requirements are documented in order to ensure that they be tested properly during
the validation phase.

A working model of the desired system is created, and walk-throughs are
conducted to determine if the functionality selected is adequate. If data migration
or import is required it should be performed, and the validation plan annotated to
require a verification of satisfactory data transfer.

Next, the specific requirements are evaluated for the level of risk their failure may
pose to meeting general requirements. If the failure of a specific requirement may
directly or indirectly cause a personal hazard, it should be specially noted. While
all parts of the software should be validated, the FDA’s guidance recognizes that
those items which are not critical to the function of the software and which cannot
cause personal hazard need not be tested as thoroughly as those which can.ii

2.3.2. Develop the Validation Test Plan
To simplify performance of the validation testing, discreet portions or modules of
the software functionality are determined, and the test plan is divided into these
modules to enable the validation to be conducted in stages. If the software
operates as a number of separate executables as the Fluke Metrology Software
does, there may be natural module boundaries.

The draft guidance paper under review by the FDA Center for Devices and
Radiological Health prohibits partial validation of software.iii If there is no
interaction across the executable boundaries, it may be possible to test a single
module if only that executable or other programs it uses are changed. Any change
to an executable or the programs it uses would require that the entire executable
be re-validated. Proper selection of the module’s boundaries can save significant
validation time later, when changes to the software may be required.

As the validation plan is formalized and documented, one of the most difficult
tasks is to determine the level of effort to be expended testing each function of the
software. To assist with this the documented requirements should be consulted.
OTS software packages probably contain a large number of features, and it is

Validation of Calibration Software by the Calibration Facility Page 5 of 14

likely, except in the case of very simple programs, that not all of the functionality
will be needed or implemented to perform the requirements placed on the
software. When configuring the software and creating the validation test,
focusing on meeting and testing specific requirements will save time.

The validation should include:

• A general functionality test of the software module. The magnitude of the this effort
should be limited. This may be fulfilled by finishing the validation testing with a walk-
through of the test asset path through the lab on the actual system.

• Tests for each of the documented specific requirements. These tests should be detailed.
If the specific requirement has been identified as critical to providing the general
requirements, it should be tested more thoroughly. If the specific requirement is noted
to have the potential to directly or indirectly cause a personal hazard, even more effort
should be expended in its testing. Note that there may be software capability which will
not be tested in detail because it is not a specific requirement of the end user.

• Tests for each of the documented general requirements. These tests should be detailed,
but should acknowledge the results of the above tests.

Each of the above tests could be discreet, or they could be combined into a few
test scripts which would encompass them all. What is important is that the
specific and general requirements are traceable to a validation test.

2.4. Validation Phase
At this point, the software is installed on the final target system taking care to minimize
the impact on the function of any existing software. In the case of upgrade software, a
back-up should be performed prior to installing the new software, so that the older
version can be restored in the event the upgrade fails validation. It is imperative that the
validation test be performed on the actual hardware which will be used, because,
assuming the developer performed appropriate validation testing, hardware is the main
variable which is to be considered.

The test plan is now run on the system. Should the software fail validation, the tested
functionality should be evaluated.

• If the software behavior is acceptable, the test plan can be modified to document the behavior.

• If the software behavior is not acceptable, the software configuration may be modified, after
which the validation plan for the entire module should be started again.

• If the software behavior cannot be made acceptable through user configuration, it should be
reported to the software vendor. A determination can then be made whether to restore the older
version of the software or to wait for a corrected version from the vendor. Most vendors will
expend significant energy to correct software bugs which prevent their software from passing
user validation.

Once the validation plan has been completed successfully, it should be reviewed by a
competent and objective party who is not a developer or user. This might be performed
internally by the QA department.iv

Validation of Calibration Software by the Calibration Facility Page 6 of 14

2.5. Implementation
Commence using the software. Set up channels which technicians can use to provide
feedback to the planners on ways to improve the system. These comments get discussed
at the next planning meeting, and the software development life-cycle starts over again.

Remember that any significant changes to the configuration or version of the software
may require retest for the entire module.

3. A Practical Exercise -
Test Plan Development Using a Working Model

Now, the focus will be shifted to the details of creating a Software Validation Test Plan. This is
not quite a “cook book” method, but will definitely speed the development of the validation plan.
A working model of the software is important to implementing the methods used here.

3.1. Walk-Through
In this case, Fluke Metrology Software, which includes both asset management modules
and calibration modules, will be used to demonstrate the validation test creation process.

At each point during the walk-through, evaluate:

• Technician interface with the software.
• UUT interface with the software.
• Calibrator interface with the software.
• Automatic software functions.
• Data stored by the software.
• Action performed by specific command to the software.
• Future activities which may require additional validation.

 The walk-through itself might include:

⇒ Prepare to receive the instrument

• Calibrate standards.
• Enter standards into the database.
• Configure standards.
• Record standards calibration record into the database.

⇒ Receive the instrument into custody of the calibration lab.

• Update to Location Record.
• Updated the instrument status in the Inventory Record.

⇒ Verify calibration of the instrument.

• Add an asset to the database.
• Perform a Calibration Verification Procedure.
• Update the Calibration Record.
• Print Calibration Certificate or Failed Calibration Report.
• Update status in the Inventory Record.

Validation of Calibration Software by the Calibration Facility Page 7 of 14

⇒ Conduct maintenance on the instrument.

• Update Maintenance Record.
• Perform a Calibration Adjustment Procedure.
• Update status in the Inventory Record.

⇒ Query the database for information.

• Print reports on specific queries.
• Print Calibration Certificates.
• Look for information based on a Query.

⇒ Manually correct information in the database.

• Add an asset to the database.
• Alter existing records.
• Security verification.

⇒ Return UUT.

• Update to Location Record.
• Updated the instrument status in the Inventory Record.

3.2. Evaluating the General and Specific Requirements
during the Walk-Through

Suppose that for this exercise the general requirements placed on the system were:

1. Automate Calibration Verification.
2. Automate Instrument Adjustment.
3. Store Calibration Event Data.
4. Print Calibration Certificates.
5. Manage Calibration Assets for Recall.

For this example, Manage Calibration Assets for Recall will be used, but the principles
can be applied to each requirement. Many of the specific requirements to support this
general requirement where documented during the Planning Phase. These included:

• Automatically assign the calibration due date after a successful calibration.
• Access data at the personal computer (PC) workstation to determine what assets require

calibration during the next recall period.
• Print a report based on the assets which will be due for calibration during the next week.
• Automatically assign the calibration due date beyond the year 2000.

 During the walk-through, the following specific requirements are noted and documented.

• Automatically assign the due date as the day it failed calibration.
• Track the location of an asset so that it can be located when due for calibration.
• Store the calibration interval for each asset.
• Log the arrival and departure date from the calibration lab.
• Log the arrival and departure time from the calibration lab.

Each of the specific requirements is then evaluated for criticality to the general
requirement and hazard to persons. No potential hazards are detected.

Validation of Calibration Software by the Calibration Facility Page 8 of 14

Specific Requirement Critical Hazard

Automatically assign the calibration due date after a successful
calibration.

Yes. No.

Automatically assign the due date as the day it failed calibration. Yes. No.

Access data at the PC workstation to determine what assets
require calibration during the next recall period.

No. No.

Print a report based on the assets which will be due for calibration
during the next week.

Yes. No.

Track the location of an asset so that it can be located when due
for calibration.

Yes. No.

Store the calibration interval for each asset. Yes. No.

Log the arrival and departure date from the calibration lab. Yes. No.

Log the arrival and departure time from the calibration lab. No. No.

Automatically assign the calibration due date beyond the year
2000

Yes. No.

3.3. Creating Modules to Simplify the Validation Task
The software chosen may provide natural barriers at which to declare modules. In the
case of the Fluke Metrology Software, these barriers are created by separate executable
files. Other software may be similar, or it may be that a form or view is most convenient.
In this case the modules are declared as the 1) Query module, 2) Manual Entry module,
and 3) Run-Time module. The natural modules may be broken down further as required
for convenience. The modules are evaluated against the specific requirements to
determine where each will be incorporated into the validation test plan.

1) Query module,
a) Database View test
b) Report test

2) Manual Entry module
a) Add Assets
b) Inventory Record test
c) Calibration Record test
d) Maintenance Record test
e) Location Record test

3) Run-Time module
a) Calibrator Control test
b) Procedure tests
c) Data Storage test
d) Add Assets test

Specific Requirement Critical Hazard Module Step

Automatically assign the calibration due date after a successful
calibration.

Yes. No. 2c

3c

Automatically assign the due date as the day it failed
calibration.

Yes. No. 2c

Validation of Calibration Software by the Calibration Facility Page 9 of 14

3c

Access data at the PC workstation to determine what assets
require calibration during the next recall period.

No. No. 1a

Print a report based on the assets which will be due for
calibration during the next week.

Yes. No. 1b

Track the location of an asset so that it can be located when due
for calibration.

Yes. No. 1a

2e

Store the calibration interval for each asset. Yes. No. 2b

3d

Log the arrival and departure time from the calibration lab. No. No. 2e

Log the arrival and departure date from the calibration lab. Yes. No. 2e

Automatically assign the calibration due date beyond the year
2000

Yes. Yes. 2c

3c

The introduction to the test plan may include a cross-reference table similar to this which
will prevent critical specific requirements from being errantly left out of the test plan. It
also clearly demonstrates the validation plan was developed throughout the software
development life-cycle and considers potential personal hazard and criticality to meeting
documented requirements.

3.4. Creating the Test Scripts
Test scripts are step-by-step instructions to the person performing validation testing. The
test plan is usually comprised of several test scripts. Once all of the documented
specific requirements are listed in the cross-reference table, test scripts can be generated
to verify the requirements. Construct the test scripts considering one specific requirement
at a time. Then when considering the next specific requirement, it may be added to the
existing script if convenient, or an entirely new script might be constructed. At the end of
each script, it is appropriate to require a signature, date and comment area for the test-
person.

Considering the specific requirement to Automatically assign the calibration due date
after a successful calibration, the Manual Entry 2c module test will probably be a
written step-by-step procedure. It can be as simple as the following:

1. Start the Manual Entry tool and login.
2. Add a new asset with a periodicity of 90 days.
3. Manually enter a new successful calibration event for the asset.
4. When calibration due data and time fields are automatically updated, verify that the

calibration due date is 90 days from the calibration date. (modify for any special
macros to exclude holidays or weekends.)

5. Save the data and exit Manual Entry.
6. Start Query and login.
7. View the calibration record just entered to verify the calibration due date is 90 days

from the calibration date.
8. Exit Query.

Validation of Calibration Software by the Calibration Facility Page 10 of 14

It might be desirable to create a block at the top of the test script outlining the specific
requirements to be tested. This will assist the test person in identifying errors.

Suppose that the specific requirement to test to Automatically assign the calibration
due date beyond the year 2000 is to be added to this test. It may then be revised as
follows:

1. Start the Manual Entry tool and login.
2. Add a new asset with a calibration interval of 90 days.
3. Add another new asset with a calibration interval of 24 months.
4. Manually enter a new successful calibration event for each asset.
5. When calibration due data and time fields are automatically updated, verify that the

calibration due date is equivalent to the calibration interval plus the
calibration date. (modify for any special macros to exclude holidays or weekends.)

6. Save the data and exit Manual Entry.
7. Start Query and login.
8. View the calibration records just entered to verify the calibration due dates are

equivalent to the calibration interval plus the calibration date.
9. Exit Query.

Later when preparing to create a test for the specific requirement to Save a manually
entered calibration event to the database, it might be determined that this test already
suffices.

By continuing to build additional tests in this fashion, the entire test plan can be created
relatively quickly with little effort wasted testing non-critical or non-hazardous items.

After all of the specific requirements are covered in the test plan, a walk-through test on
the final hardware platform should be created to test basic functionality not otherwise
tested. This test script will satisfy overview testing.

3.5. Automating Portions of the Test Plan
The test plan need not be a series of manual entries documented step by step in a test
script. The potential to use automated tests for a particular module or for a group of
specific requirements should be noted during the walk-through. In many cases,
automated tests can be created and run quickly. Their performance can then be
documented in the test plan. When an automated test is created, the test should be frozen
in it’s form at the time of the successful test, and a copy of the automated test should be
archived and maintained with the test plan.

This is not intended to imply that a company conducting a validation test on one piece of
software should purchase and attempt to use automated testing software such as
Microsoft Test. If the test is not one which requires multiple repetitions, it is likely that
creating such a test would take longer than manually testing. What is intended, is that the
calibration lab may be able to write test calibration procedures in the language of the
calibration software whose successful accomplishment would be an indication that the
software is operating properly.

Validation of Calibration Software by the Calibration Facility Page 11 of 14

3.5.1. Creating Automated Tests
It is relatively easy for the calibration lab to create automated tests. Taking each
applicable specific requirement one at a time as was done when creating the
manual tests, an automated test procedure can be constructed which may test
specific requirements quickly.

In this instance, the specific requirement to Automatically assign the calibration
due date after a successful calibration practically requires that a test case be
constructed using a calibration test procedure. If only this one specific
requirement was to be tested, the procedure could be as simple as a dialog box
prompting the user to select if the test should be a pass or a fail. If pass is
selected, the calibration passes, and the calibration due date should be assigned as
today’s date plus the length of the calibration interval. This would then be tested
by printing a Certificate of Calibration or by viewing the database data using the
Query functions.

As more and more specific requirements are evaluated to be appropriate for
automated test, they could also be added to this or a separate test procedure.
Maybe at the conclusion of the test, printing a Certificate of Calibration would
serve to validate a specific requirement from a completely different general
requirement branch. After that, perhaps the boundaries of a series of voltage tests
on a UUT could be validated to insure they pass or fail at the expected tolerance.
Remember that although they are tested within many different modules, all of the
specific requirements can be cross-referenced to the validation plan using the
cross-reference table.

3.5.2. Modifying Existing Automated Procedures
Some automated tests may be obtained from the vendor. For instance, Fluke
provides a large number of calibration procedures for many UUTs on various
calibrators. These could be modified to test the software packages control of
calibrator functions.

3.5.3. Documenting the Performance of an Automated Test
A page instructing the validation test-person to run the automated test should be
included in the validation test plan. This might be in the form of a table, but it is
more often incorporated into the body of a test script combining both manual and
automated activities. Once again, it is appropriate for the page to include a
signature, date and comment area for the test person.

3.6. Running the Test Plan
Once the test plan is written, the software must be transferred to the hardware on which it
will be run during actual operation of the calibration lab. This may temporarily impact
work in the lab.

Validation of Calibration Software by the Calibration Facility Page 12 of 14

Be sure methods are in place to return the system to its previous state should the software
fail validation for any reason.

Once the test plan is completed successfully, it should be reviewed by the lab supervisors
and persons responsible for meeting FDA requirements. The entire validation process
should be reviewed by an internal or external objective third party, then stored safely with
disk copies of any automated tests utilized during its completion.

4. Items to Consider
The following is a list of items which should be considered during implementation of a
validation plan for calibration software or asset management software. They have been compiled
primarily from feedback from calibration labs to Fluke Corporation.

• Test any automatic functions of the software such as:

1. Assignment of calibration due date and time.
2. Test failure at the test tolerance boundaries. (One procedure which utilizes the entire

functionality of the attached calibrator might be run five times. First with perfect
input, then at the upper tolerance pass limit, then at the upper tolerance fail limit, then
at the lower tolerance pass and fail limits.)

3. Assignment of pass or fail.
4. Calculation of Test Uncertainty Ratio (TUR). (For MET/CAL, this has been tested by

creating a procedure which utilizes every accuracy specification for the a given
calibrator at a pre-determined ratio to verify the expected ratio is returned.)

5. User defined automatic functions such as forwarding field information or actions
executed by macros.

• Verify procedures meet the calibration requirements of the UUT manuals.

• Anticipate year 2000 compliance issues such as:

1. Check manual and automatic assignment of calibration due dates across the turn of the
century.

2. Change the computer system date to beyond year 2000 and determine system response..

• Verify hazardous conditions are handled appropriately.

1. Procedures operating at voltages which could cause grave personal injury should
provide a warning message.

2. Connections are only altered while the calibrator output is secured.

• Detailed test is only required for the functions utilized by the individual calibration lab.

5. Conclusion
Validating OTS software continues to be one of the largest obstacles in the path of the calibration
lab seeking to upgrade to the latest tools for automating their processes. There is heightened
awareness of the software validation issue due to the need to upgrade to year 2000 compliant
software, the ever advancing industry standard both in personal computer operating systems and
in the complexity and flexibility of available OTS software to support the calibration lab. The

Validation of Calibration Software by the Calibration Facility Page 13 of 14

benefits of validating software are not doubted, but the choice to upgrade is tempered by the
spectre of validating the new software which requires hardware and personnel resources.

Creating a proper validation test on-site is time consuming, but is not complicated. By following
a method such as that outlined above, a large amount of time can be saved during the
development of the validation test which will be easy to administer, and will provide a high level
of confidence to the calibration lab and external auditing authorities in the software tested.

Validation of Calibration Software by the Calibration Facility Page 14 of 14

Biographical Sketch

Patrick Kershaw graduated with an Aerospace Engineering degree from the University of
Southern California in 1984. He spent eight years in the U.S. Navy working as a Nuclear
Engineer and Submarine Warfare Officer while pursuing post-graduate studies in Nuclear
Engineering and Software Engineering. Since leaving the service in 1991, he has pursued a
career in Software Engineering attaining certification in Software Test and C++ Programming.
Patrick has worked at Fluke Corporation both testing and developing calibration software with
the MET/CAL development group for the past two years.

References

1. Federal Register, Current Good Manufacturing Practices - Medical Devices, Vol. 61,
Number 195, website www.fda.gov/cdrh/humfac/frqsr.html,Oct 7, 1996.

2. Federal Register,
21 CFR 820.3, Definition
21 CFR 820.30,Design Controls
21 CFR 820.70, Production and Process Controls
21 CFR 820.72, Inspection, Measuring, and Test Equipment
21 CFR 820.75, Process Validation, Oct 7, 1996
Each of these can be viewed at website www.fda.gov/cdrh/humfac/frqsr.html (way down
at the bottom!)

3. Guidance for Industry, General Principles of Software Validation, Draft Guidance
Version 1.1, .This can be viewed at website www.fda.gov/cdrh/comp/sweval.html, June
9, 1997.

4. Frank Scavo, CFPIM, CIRM, Software Validation for Pharmaceutical and Medical
Device Manufacturers, paper delivered 1994 APICS International Conference in San
Diego, CA, USA.

5. Lewis, Robert O., Independent Verification and Validation: A life Cycle Engineering
Process for Quality Software. New York: John Wiley & Sons, Inc., 1992.

Footnotes:

i Current Good Manufacturing Practices - Medical Devices.
ii 21 CFR 820.30(g).
iii Guidance for Industry, General Principles of Software Validation, Draft Guidance Version 1.1,
Section IV.G.
iv Software Validation for Pharmaceutical and Medical Device Manufacturers, section 1.5.

