

Hart Scientific

9938 MET/TEMP II

中文报告插件

用户手册

美国福禄克公司

Fluke Hart Scientific o 799 E. Utah Valley Drive o American Fork, UT 84003-9775 o USA电话: +1.801.763.1600传真: +1.801.763.1010E-mail: support@hartscientific.com

www.hartscientific.com

Subject to change without notice. o Copyright © 2005 o Printed in USA 版权所有 © 2005,保留不事先通知而更改的权利。在美国印刷

1	概述		1
	1.1	什么是MET/TEMP II的中文报告插件?	1
	1.2	要求	1
	1.3	安装	2
2	利用M	AET/TEMP II收集数据	5
	2.1	设置MET/TEMP II	5
	2.2	启动中文报告插件	6
3	打印中	中文报告	9
	3.1	输入中文报告参数值	9
	3.	.1.1 编辑数据对话框-RTD/PRT探头	9
	3.	.1.2 编辑数据对话框-热电偶探头	11
	3.2	预览和打印中文报告	12
	3.3	编辑中文报告的参数值	14
	3.4	测试报告的例子	14

图例索引

冬	1	Regional Options(区域和语言选项)对话框一简体中文设置	2
冬	2	MET/TEMP II 默认对话框一测试选项卡	5
冬	3	打印测试报告对话框	6
图	4	Edit Data(编辑数据)对话框-RTD/PRT探头的"Reference Probe"	
		(参考探头)选项卡	9
冬	5	Edit Data(编辑数据)对话框-RTD/PRT探头的"Test Probe"	
		(测试探头)选项卡	10
冬	6	Edit Data(编辑数据对话框)一热电偶探头的"Test Probe"	
		(测试探头)选项卡	11
冬	7	Report Preview(报告预览)对话框	13
图	8	Edit report(编辑报告)对话框	14
冬	9	RTD/PRT测试报告一封面	15
冬	1() RTD/PRT测试报告一数据页	16
图	11	RTD/PRT测试报告-摘要页	17
冬	12	2 热电偶测试报告一封面	18
冬	13	3 热电偶测试报告一数据页	19
冬	14	4 热电偶测试报告-摘要页	20

1 概述

1.1 什么是**MET/TEMP** II的中文报告插件?

MET/TEMP II的中文报告插件是定制的报告工具,它利用MET/TEMP II收集的数据生成100Ω PRT和热电偶的测试报告。所生成的报告符合中国绝大多数单位的证书要求。

1.2 要求

在安装中文报告插件之前,必需首先安装4.2版或更高版本的MET/TEMP II软件。如果 程序未在计算机中检测到MET/TEMP II V4.2或其更高版本,则中文报告插件的安装程 序不会运行。

重要信息:打开MET/TEMP II软件"Help"(帮助)菜单中的"About"(关于)选项,即可查看MET/TEMP II软件的版本信息。

您仅能使用MET/TEMP II V4.2或其更高版本软件收集的数据打印中文报告。早期版本 MET/TEMP II收集的数据中并不包含打印中文报告所必需的全部信息。

中文报告插件需要Windows[®] 98/NT4/2000/XP操作系统。在运行Windows[®] 95操作系统的计算机上不能安装中文报告插件。

如果您使用的不是中文版的Windows[®]操作系统,请通过"Control Panel"(控制面板)中的"Regional and Language Options"(区域和语言选项)来安装简体(Simplified Chinese)中文语言。在安装过程中,可能需要插入Windows[®] CD-ROM!请参考图1。

Regional Options	×
General Numbers Currency Time Date Input Locales	
Settings for the current user	1
Many programs support international settings for numbers, currencies, times, and dates. Set the locale in order to use the standard settings.	
Your locale (location):	
English (United States)	
Language settings for the system Your system is configured to read and write documents in multiple languages.	
Simplified Crimese That Traditional Chinese Turkic Out of the base	
Advanced	
OK Cancel Apply	

图 1 Regional Options (区域和语言选项)对话框一简体中文设置

1.3 安装

重要信息:在运行Windows[®] NT/2000/XP操作系统的计算机上安装中文报告插件时, 您必需以管理员权限登录。

重要信息:在安装中文报告插件之前,您必需首先安装MTE/TEMP II软件4.2版或更高版本。

- 1. 将中文报告插件的安装光盘放入计算机的 CD-ROM 驱动器。安装程序应该会自动运行。
- 2. 按照屏幕上的提示安装中文报告插件。
- 3. 安装程序将自动检测计算机上是否安装有 MET/TEMP II 软件 4.2 版或其更高版本。
- 完成安装之后,可能需要重新启动计算机。如果程序提示重新启动计算机,请重启 计算机来完成安装。

完成安装之后,请参考第2节"利用MET/TEMP II收集数据",了解利用MET/TEMP II 软件收集的数据打印报告的信息。

2 利用MET/TEMP II收集数据

2.1 设置MET/TEMP II

您首先需要对MET/TEMP II软件进行设置,使其收集打印中文报告所需的数据。请进入MET/TEMP II默认对话框(File 菜单 | Defaults 选项)中的 "Test" (测试)选项 卡进行设置。您必需在开始测试之前修改设置选项。请参考图2。

ET/TEMP II I	efaults					
Default Settin	js: VSet-points	YSetup	YGraph	Benorts		
User	Iest	Eonts & Sizes	MET/TRACK	SmartSwitch		
	uba:	,				
Test Derai	10.2					
Self-	heat test probes [UUTs) before takin	iq readings			
Enter nu	mber of measurer	ments to average b	o produce one rea	ding: 4		
Alwa	ys discard first rea	ading on each chai	nnel when taking r	neasurements		
Prom	pt to calculate co	efficients when clo	osina test			
T Take	Reference read	ings in ohms/wolts	as well as tempera	hura	וור	
14 TOKO	nerelence read	rigs in orinis7 voice a	as well as tempera	(ure	J	
Heat S	ource Calibrati	ion Options:				
XW	/rite new coefficie	ents to heat source	after calibration			
Set-poi	nt Override Op	otions:			lov	
If heat	source has diffice	ulty meeting Tolera	nce specification		<u>UN</u>	
Promp	t user to override	e settings after time	specified below	-	Cance	
How	much time should	d the heat source b	e given? 30	in.	Gance	
10.0000000			and the second sec			

图 2 MET/TEMP II 默认对话框一测试选项卡

在默认设置下,MET/TEMP II在给定的设置点对多个测量值进行平均得到单个读数。 在中文报告中会打印给定设置点的每次测量结果。请在"Enter number of measurements to average..."(输入要平均的测量次数...)输入框中输入您希望在 中文报告中打印的测量结果的数量。

重要信息: 在校准铂电阻探头时,若要使用中文报告,则必需在0°C和100°C设置点 读取测量值。RTD/PRT校准报告仅打印在这两个温度点测量的数据(请参阅第9页的 3.1 "输入中文报告参数值"部分)。

中文报告要求在校准RTD/PRT时必需以欧姆为单位读取参考探头的读数,而校准热电 偶时则必需使用伏特(EMF)为单位。在默认设置下,MET/TEMP II仅仅以温度为单 位收集参考探头的读数。若选中"Take Reference readings in ohms/volts as well as temperature"(以欧姆/伏特及温度为单位读取参考读数)选择框,MET/TEMP II则 会以温度和欧姆或伏特为单位收集参考探头的读数。在使用中文报告时,必需选中该 选项。

2.2 启动中文报告插件

在MET/TEMP II完成测试之后,请在"File"(文件)菜单中选择"Close Test"(关闭测试)选项,关闭测试。然后在"File"(文件)菜单中选择"Print Report"(打印报告)选项,即可打印中文报告。选择之后即会显示"Print Test Report"(打印测试报告)对话框。

Select a test probe based on: Test number	Test number Model numb Frint all reports for this test number	er <u>Fonts & Sizes</u>
Select probes	F Preview report	1
Probe model number	Probe serial number	
▶ 5614	001	
ТуреК		
ТуреК ТуреК	001	
ТуреК ТуреК	001 002	
ТуреК ТуреК	001 002	
TypeK TypeK Report Template:	001 002	
TypeK TypeK Report Template:		
TypeK TypeK Beport Template: Use default report template Use custom report template	001 002	

图 3 打印测试报告对话框

利用"Test number"(测试编号)下拉式对话框选择相应的测试编号。在默认设置下,最后一次的测试将被选中。

在"Select probes"(选择探头)列表中,从显示的清单中选择相应的项,即可选中相应的测试探头。

如果您希望打印与该测试编号相关的所有探头的中文报告,请选中"Print all reports for this test number"(打印此测试编号的所有报告)选择框。

注:如果选中"Print all reports for this test number"(打印此测试编号的所有报告)选择框,中文报告插件即会打印与该测试编号相关的所有测试探头;否则,它就仅打印所选的测试探头。如果您在"Select probes"(选择探头)列表中选择了多个测试探头,则仅打印第一次选择的探头的报告。

如果您希望在打印中文报告之前进行预览,请选中"*Preview report*"(预览报告)选择框。

在"Report Template"(报告模板)部分,选择"Use custom report template"(使用自定义报告模板)选项,点击"Browse"(浏览)按钮,然后选择"CHNARPTS.EXE" 文件。文件应该位于\METTEMP2\REPORTS\CHINESE文件夹中。

点击"Print" (打印) 按钮启动中文报告插件。

选择"Cancel"(取消)按钮,即可关闭"Print Test Report"(打印测试报告)对话框。

3 打印中文报告

3.1 输入中文报告参数值

MET/TEMP II并不能收集到中文报告所需的全部数据。这意味着在打印报告之前,需要用户输入一些报告特需的参数。在第一次打印探头的中文报告时,会显示"Edit Data"(编辑数据)对话框。请参见第9页的图4。如果某个中文报告已经打印过了,则会显示"Edit Report"(编辑报告)对话框。

在输入了报告所需的参数值之后,请选择"OK"按钮将此信息保存到数据库中或预 览报告。这些参数值是被保存在数据库中的,但是随后还可以编辑。选择"Cancel" (取消)按钮则中断编辑过程,您输入的所有参数值都将丢失,并且不会打印报告。

注: 在编辑以前输入或保存的报告参数值时,如果选择"*Cancel*"(取消)按钮则中断编辑过程,并且对报告参数值所做的所有修改都将无效,将会使用以前保存的报告参数值打印或预览报告。(请参见第14页的3.3"编辑中文报告参数值"部分。)

3.1.1 编辑数据对话框-RTD/PRT探头

用户必须输入关于参考探头和测试探头的信息。每一探头的型号和序列号都会被显示在相应的选项卡中。该信息是不可编辑的。

H Edit Data: Report # MT200	503000-002		X
Reference Probe Infor	 nation		
Model number: 5614	Serial number: 123456		
Probe type: SPRT	Rtpw: 100.0112	W(100): 0.9999723	
Bridge correction (0C):	Bridge correction (100C)		QK
			Cancel
			Help

图 4 Edit Data (编辑数据) 对话框-RTD/PRT探头的 "Reference Probe" (参考探 头) 选项卡

以下介绍"Reference Probe"(参考探头)选项卡中各项的含义。

- Model number (型号)和Serial number (序列号):这些区域是不可编辑的。
 这些信息仅供参考。
- *Probe type* (探头类型): 从*Probe type* (探头类型)下拉式列表中选择参考探 头的类型。也可以在输入框中输入新的参考探头类型。
- *Rtpw*:这是参考探头在水三相点(0.01℃)时的电阻值。
- W(100): 这是参考探头在100℃时的比值。
- *Bridge correction (OC)*(OC时的电桥修正值):这是用来读取参考探头读数的测量设备在O°C时的修正值。
- *Bridge correction (100C)*(100C时的电桥修正值):这是用来读取参考探头读数 的测量设备在100℃时的修正值。

注:如果您已经在"Test Probe"(测试探头)选项卡中填充了Bridge correction (OC) 和Bridge correction (100C)区域,则输入的值也会被显示在该选项卡中的相应区域。如果需要的话,可以进行修改。

注: 在打印报告之前, 必须填写该选项卡中的所有区域。

Reference Probe Test Pro	be			v1.0.1
Text Probe Informatio	on			
Model number:	Ser	ial number:		
5614	00	1		
Probe grade:		Bridge correction (0C):	Bridge correction (100C):	
Industrial Grade A		0	0	
Calibration due date:				
7 / 7 /2005	*			QK
				Constant Sector of Sector Sector
				Cancel
				1.1.1

图 5 Edit Data (编辑数据) 对话框-RTD/PRT探头的"Test Probe" (测试探头) 选项卡

以下介绍"Test Probe" (测试探头)选项卡中各项的含义。

Model number (型号) 和 Serial number (序列号):这些区域是不可编辑的。
 这些信息仅供参考。

- Probe grade(探头等级):从Probe grade(探头等级)下拉式对话框中选择测 试探头的等级。也可以在输入框中输入新的测试探头等级。
- Bridge correction (OC) (OC时的电桥修正值):这是用来读取测试探头读数的测量设备在0℃时的修正值。
- *Bridge correction (100C)* (100C时的电桥修正值): 这是用来读取测试探头读 数的测量设备在100℃时的修正值。

注:如果您已经在"Reference Probe"(参考探头)选项卡中填充了Bridge correction (0C)和Bridge correction (100C)区域,则输入的值也会被显示在该选项卡中的相应区域。如果需要的话,可以进行修改。

 Calibration due date: 该区域是由在MET/TEMP II中输入的数据自动填充的。它 等于校准日期加校准间隔。选择下拉式日历,然后选择新的日期,则可以修改校 准期满日期。输入的必须为将来的日期。

注: 在打印报告之前, 必须填写该选项卡中的所有区域。

3.1.2 编辑数据对话框一热电偶探头

在打印热电偶探头的中文报告时,无需再输入参考探头的其它信息。

Test Probe				
Test Probe Informa	lion			
Model number:	Serial number:	Tolerances:		
TC-K	002	Set Point	Tolerance	
Calibration due date		100	0.05	
7/8/2005	•	200	0.05	
Comparison type:		300	0.05	
Г. <u>П</u>				OK
				the second second
				Cancel
				10000000000000000000000000000000000000

图 6 Edit Data (编辑数据对话框) 一热电偶探头的 "Test Probe" (测试探头) 选 项卡

以下介绍"Test Probe" (测试探头)选项卡中各项的含义。

- *Model number*(型号) 和 *Serial number*(序列号):型号和序列号。这些区 域是不可编辑的。这些信息仅供参考。
- Calibration due date(校准期满日):该区域是由在MET/TEMP II中输入的数据 自动填充的。它等于校准日期加校准间隔。选择下拉式日历,然后选择新的日期, 则可以修改校准期满日期。输入的必须为将来的日期。
- *Comparison type*(比对类型): 该区域是可选的。您在此输入的信息将被打印 在报告上。
- Tolerances(允差):在Tolerance(允差)区域中输入的值用来计算每一设置点的上限和下限。用户应该为每个设置点分别输入允差值。如果保留Tolerance(允差)区域为空,则将会被赋予O值。

3.2 预览和打印中文报告

如果您在MET/TEMP II软件 "Print Test Report" (打印测试报告)对话框中选中了 "Preview report" (预览报告)选择框(请参见第6页的图3)来预览中文报告,则 会显示 "Report Preview" (报告预览)对话框(请参见第13页的图7)并显示该测 试探头的中文报告。

利用"Report Preview"(报告预览)对话框中的控制按钮,您可以

- 将报告发送到打印机
- 刷新报告的数据
- 放大或缩小报告的预览图
- 将报告向前或向后翻页

点击对话框右上角的这个图标,即可退出"Report Preview"(报告预览)对话框。

注:如果您选择了不预览中文报告,则报告将会被直接送到打印机。用户可以通过弹出的Windows[®]打印设置对话框选择打印机和其它打印机选项。

24 Report Preview	<u>_ ×</u>
😂 🔗 60% 💌 🛛 🕅 🔍 🔳 1 / 1+	crystal 🐾
Preview	
Fluke-Hart Scientific	
检定证书	
8844. see	
作品を称: <u>KTU</u> お兄が号:ss14	
样品等级: Industrial Grade A	
生产厂家: <u>tuns</u>	
样品编号:001	
送检单位: May Customer	
枝论:	
10 m m	
& tr 約 定局 :	
	-
税(2011年) 400 (1111年) 400 (1111年) 1111年 - 1111年 - 11111年 - 11111年 - 11111年 - 1111年 - 11111年 - 111111年 - 11111111	

图 7 Report Preview (报告预览) 对话框

3.3

编辑中文报告的参数值

如果已经打印过某个测试探头的中文报告,则会显示Edit Report (编辑报告)对话框。

图 8 Edit report (编辑报告) 对话框

选择Yes按钮即可以编辑报告的参数值,而选择No按钮则可以打印或预览报告。

如果您在MET/TEMP II软件的"Print Test Report"(打印测试报告)对话框选中了 "Print all reports for this test number"(打印该测试编号的所有报告)选择框(请 参见第6也的2.2"启动中文报告插件"部分)来打印所选测试编号的所有报告。则可 以利用Edit Report(编辑报告)对话框来选择编辑或不编辑与此测试编号相关的每个 测试探头的参数值。如果选中"Apply to all reports for test #..."(应用到测试编 号#...的所有报告)选择框,则会将设置用于随后所有的测试探头,而不再询问用户。

如果您选择了编辑参考值,则在第一次打印该测试探头的报告时会显示"Edit Data" (编辑数据)对话框(请参见第9页的3.3"输入中文报告的参数值"部分)。对话框 中的所有区域都显示有上次输入的参数值,可以根据需要进行修改

3.4 测试报告的例子

以下为RTD/PRT和热电偶探头报告的图例。

证书	Hart Scientific 检定证书 ^{3编号:} ST200502005-002
 样品名称:	RTD
样品型号:	5614
样品等级:	Industrial Grade A
生产厂家:	Burns
样品编号:	001
送检单位:	Hart Scientific
结论:	
	批准:
	复核:
	检定员:
 检定日期: 有效期至:	05年 02月 24日 05年 03月 26日

图 9 RTD/PRT测试报告一封面

9938 中文报告插件 用户手册

标准仪器 标准热偶测量仪器: 仪器类型: 仪器型号: 仪器编号:	1529(test) SPRT 5614 testref Probe, Secondary Standard 22.0C 20 %RH Hart Scientific 100.00124 Ω 1.23560		被检样品 送检单位: 样品名称: 样品型号: 样品编号:	Hart Scientific RTD 5614 001 Burns Industrial Grade A ST200502005-002	
仪器名称: 仪器名称: 环境温度: 环境温度:			 (1) 生产厂家: 样品等级: (2) (2) (
应定地点: R*(tp): W(100C):			仅益状态 检定后: 证书编号:		
测量值		标	准	被检样品	
		0°C	@ 100°C	0°C	@ 100°C
读数 (Ω)	1	99.9702	139.2693	100.1182	139.1005
	2	99.9705	139.2701	100.1198	139.1023
	3	99.9707	139.2704	100.1200	139.1049
	4	99.9713	139.2703	100.1202	139.1069
	5	99.9707	139.2711	100.1208	139.1085
	6	99.9716	139.2722	100.1213	139.1109
	7	99.9709	139.2723	100.1214 100.1221	139.1129 139.1141
	8	99.9715	139.2728		
平均值 (Ω):		99.9709	139.2711	100.1205	139.1076
电桥修正 (Ω):		0.00200	0.00220	0.00200	0.00220
修正后的平均值	(Ω):	99.9729 139.2733	139.2733	100.1225	139.1098
修正后的电阻值	(Ω):			100.1463	123.7231
修正后的温度调整(C):		-0.0610	40.5983	0.3742	40.5983
α:				0.0023	3542
Δα:				-0.0014	4968
绝缘电阻 (MΩ):				128.	00
结论:					
1		0.5778		检定	2日期:

图 10 RTD/PRT测试报告一数据页

检定结果

<u>128.00</u> <u>MΩ</u>
100.1463 Ω
123.7231 Ω
0.0023542

环境温度: 22.0 ℃ 环境湿度: 20 %RH

图 11 RTD/PRT测试报告一结论页

	Hart Scientific						
Hart Scienting							
检定证书							
	证书编号: ST200502001-031						
	样品名称: TC						
	样品型号: TypeK						
	生产厂家: Hart						
	样品编号: 001						
	送检单位: Hart Scientific						
	结论:						
	批准:						
	复核:						
	检定员:						
	检定日期: 05 年 02 月 23 日						
	有效期至: 05 年 04 月 15 日						

温度设定点 (°C)	标准热电偶 热电势 (mV)	标准热偶测量仪器: 1560(test);2565(test) 送检单位 标准热偶编号: Type K Thermocouple 被检热偶 标准热偶型号: TypeK 被检热偶 标准热偶类型: 002 被检热偶			5检单位: 5检热偶类 5检热偶型 5检热偶型	Hart Scientific (호型: TC 일号: TypeK 응号: 001	
100.00	4.09623	读数 1 2 3 4	标准 2.99120 2.99130 2.99140 2.99180	被检 2.96890 2.96870 2.96850 2.96900			
		5 平均	2.99100	2.96900	检定温度=99.9106	5 ° C	炉温变化=0.00288 °C
参考端温度(C)	27.5200	补偿电势(mV)	1.10246	1.10246	C(+= 1+) 41 000	V/8 C	0 (34+4A) 41 000 V/8
与检定点之差 (u) 均+补偿(与检定点之差 (uV)=(标准热电偶热电势(mV)-(平 均+补偿电势(mV))*S(被检)/S(标)			0.00249	s(标准)=41.369 u e(被检)=4.096 mV	av/ C	S(被位)=41.369 uV/ 允许误差=± 0.065 mV
矢 附:[]	一十场中和医生儿的	(秋花)		4.07380	允许下限=4.031 =	νV	允许上限=4.161 ■V
送差(調差)	mv产头协调·0(1	(111)		-0.02243			
秋左(0 1 20 47	K1K/	7.01550	-0.54228			
200.00	0.1304/	2	7.01530	6.98750			
		3	7.01530	6.98780			
		4	7.01570	6.98740			
		5	7.01580	6.98770			
		平均	7.01552	6.98748	始守坦府-100 500	00 0 0	上海道水(k−0 00€14 ° C
参考端温度(C)	27.4900	补偿电势(mV)	1.10124	1.10124	12/上面/又-199. 502	1/2 C	A m 2 H -0.00014 C
与检定点之差 (u) 均+补偿	与检定点之差(uV)=(标准热电偶热电势(mV)-(平 均+补偿电势(mV))*S(被检)/S(标)		0.02166	0.02166	S(标准)=39.965 u e(被检)=8.138 mV	uv/* C	S(蚕检)=39.965 uV/°(允许误差=± 0.102 mV
实际值	实际值=平均+补偿+允许误差			8.11042	☆许下陽=8 036 -	v	☆ 许 上 賜=8 240 = ¥
误差	(mV)= 实际值-c(1	皮检)		-0.02805			70-1 L R 0. 210 E
误差(°C)=误差(uV)/S(皮楦)		-0.70186			
300.00	12.20857	1	11.10750	11.06650			
		2	11.10930	11.06/70			
		4	11 11040	11.06000			
		5	11,10950	11.06880			
		平均	11,10924	11.06820	· 体合调度 000 000		M
参考端温度(C)	27.2600	补偿电势(mV)	1.09190	1.09190	位定温度=299.920	74 C	沪温变化=0.03040 °C
与检定点之差 (u) 均+补偿	V)=(标准热电偶/ 电势(mV))*S(被检	热电势(mV)-(平)/S(标)	0.00739	0.00739	S(标准)=41.446 u e(被检)=12.209 =	uV/* C	S(彼检)=41.446 uV/* (允许误差=± 0.131 mV
实际值	=平均+补偿+允许	F误差	[]	12.16759	43/7 T FE-10 070	-17	42/r L IE-10 240 Y
误差	(mV)= 实际值-c()	皮检)		-0.04098	JUT P RE=12.078	≣V.	JUTT LPR=12.340 mV
误差(°C)=误差(uV)/S(波检)		-0.98884			
结论:							Test
			复核	:			检定日期: 05年 02月 23日

图 13 热电偶测试报告一数据页

9938 中文报告插件 用户手册

检定结果

温度 (°C)	热电势 (mV)	修正 (°C)
100.00	4.074	0.54
200.00	8.110	0.70
300.00	12.168	0.99

参考端温度: 0.00 ° C

<u>检定陈述</u> T

<u>检定备注</u> T

环境温度: 22.0 °C 环境湿度: 20 %RH

图 14 热电偶测试报告一结论页