

Temperature and Relative Humidity Calibration System

Speaker: Norman Willgress

Authors: Rick Walker, Alan Cordner Fluke Corp., Hart Scientific Div. 799 E Utah Valley Drive American Fork, UT 84003-9775

Team

- Alan Cordner software, assembly, testing
- Tom Wiandt metrology
- Dave Farley mechanical
- Rick Walker design, analysis

Objective

 Construct a calibration system to be used by manufacturing to calibrate the temperature and relative humidity measurement functions of a new digital environmental data recorder

Outline

- Application background
- Description of the instrument
- Calibration system requirements, uncertainties
- Design of the calibration system, equipment
- Temperature uncertainty analysis
- Relative humidity uncertainty analysis
- Results

Background

- Environmental control is important in calibration work
- Ambient temperature and relative humidity affect processes and measurements
- ±0.5°C, ±5% RH requirement not unusual
- Conditions must be monitored, recorded, reported
- Chart recorders have been used
- Digital recorders recently available—many advantages, including better accuracy
- Calibration is a challenge—the calibration system must be carefully designed and operated

Digital temperature/relative humidity recorder

Features

- Display/processing unit—non-volatile memory
- Two detachable sensor units
- Sensor extension cables, up to 30 m (100 ft.)
- Sensor units contain temperature and relative humidity sensing components
- Analog-to-digital conversion within the sensor unit
- Sensors contain memory—calibration, ID
- Adjustable digital correction coefficients—stored in the sensor
- Sensor calibration is independent of the display/processing unit

Sensor specifications

- Model H temperature accuracy: ±0.125°C
- Model H temperature range: 16 to 24°C
- Model H relative humidity accuracy: ±1.5%
- Model H relative humidity range: 20 to 70%
- Model S temperature accuracy: ±0.25°C
- Model S temperature range: 15 to 35°C
- Model S relative humidity accuracy: ±2%
- Model S relative humidity range: 20 to 70%

Sensor characteristics

- 19 mm (0.75 in.) diameter, 78 mm (3.1 in.) length
- Self-heating from electronic components in the sensor unit
- Self-heating can be largely corrected by calibration
- Self-heating is slightly dependent on air velocity
- Keep sensor units apart
- Hysteresis of the RH device must be considered
- Digitally adjustable slope and offset corrections
- Three-point calibration—tests nonlinearity, provides redundancy

Calibration requirements

- T ref. uncertainty (*k*=2, 4:1): 0.031°C
- T cal. uncertainty (*k*=2, 3:1): 0.041°C
- RH ref. uncertainty (*k*=2, 4:1): 0.37%
- RH cal. uncertainty (*k*=2, 3:1): 0.5%
- Three temperature points from 15 to 35°C
- Three RH points from 20 to 70%
- Ability to calibrate 10 sensor units at once
- Controlled air velocity limits self-heating uncertainty
- Automated
- One display/processing unit, switching device
- All devices powered continuously
- Use of a check standard

Equipment

- Model 2500ST two-pressure humidity generator
 - stable and accurate relative humidity, stable temperature
- Model 5610 thermistor probe
 - measure temperature
- Model 1504 thermometer readout
 - measure thermistor resistance, display temperature
- Model 1620 recorder display/processing unit
 - read DUT and check standard measurements
- Model 1620 recorder sensor unit
 - check standard
- Model 7001/7011 switch
- Test manifold
 - hold devices, control air flow, thermal isolation, uniformity
- Computer and software

T/RH calibration system

2500 two-pressure humidity generator

- Covers T and RH range of interest
- Controls temperature and relative humidity
- RH standard uncertainty: 0.14%
- Large chamber
- 20 I/min air flow
- Clean, dry, 550 kPa (80 PSIG) air supply
- RS-232 serial interface to computer
- Temperature accuracy inadequate for this application

Temperature reference

- 5610 thermistor stability (*k*=2): 0.0050°C
- Thermistor calibration (*k*=2): 0.0022°C
- Thermistor characterization (k=2): 0.0020°C
- Readout uncertainty (k=2): 0.0024°C
- Combined standard uncertainty: 0.0031°C

FLUKE @

Check standard

- Off-the-shelf sensor unit
- Stays with the calibration system
- Processed along with the DUTs each time
- No adjustment of its characterization
- History kept
- Excessive error can be recognized

Test manifold

- Controls air flow to DUTs
- Holds 10 DUTs, check standard, thermistor, control probe
- Thermally isolates sensors from each other to avoid mutual self-heating
- Facilitates loading and removing devices

Manifold exploded view

Temperature uniformity

- Testing revealed temperature differences as much as 0.042°C within the test manifold
- Temperature gradients were repeatable
- Profiling procedure quantified the bias at each location
- Corrections were applied
- Errors reduced to within ±0.01°C

Calibration steps

Step	Phase	Measurement	Temperature	Relative humidity
1	as-found	T1	16°C	45%
2	as-found	T2	20°C	45%
3	as-found	RH2	20°C	45%
4	as-found	Т3	24°C	45%
5	as-found	RH1	20°C	20%
6	as-found	RH3	20°C	70%
7	adjustment	-	-	-
8	as-left	RH3	20°C	70%
9	as-left	RH1	20°C	20%
10	as-left	T1	16°C	45%
11	as-left	T2	20°C	45%
12	as-left	RH2	20°C	45%
13	as-left	Т3	24°C	45%

Settling

- 2 to 3 hours to allow the chamber and sensors to settle
- Settling standard uncertainty: 0.01°C, 0.07%

Computer

- Controls the humidity generator, sets set-points
- Reads temperature from the reference
- Monitors settling
- Controls switch for DUTs
- Applies temperature corrections per location
- Reads the check standard
- Reads each DUT
- Calculates errors
- Calculates new characterization coefficients
- Records results
- Reports pass/fail

Other issues

- Sensor hysteresis *u*: 0.0°C, 0.15%
- DUT noise, round-off: 0.0029°C, 0.029%
- Air speed x self-heating: 0.0025°C
- Temperature extrapolation: 0.0006°C
- No noticeable DUT drift during calibration
- Calibration laboratory temperature and relative humidity are controlled, recorded

Temperature uncertainties

		Standard
Description	Туре	uncertainty, °C
Temperature reference	В	0.0031
Manifold nonuniformity (corrected)	А	0.01
Settling, stability	А	0.01
Air speed and self-heating	В	0.0025
DUT hysteresis	А	0.0
DUT drift	А	0.0
DUT noise and round-off	А	0.0029
Calibration point extrapolation	А	0.0006
Combined standard uncertainty		0.015
Combined expanded uncertainty, $k=2$		0.030

Relative humidity uncertainties

Description	Туре	Standard uncertainty, %
Humidity generator	В	0.14
Settling, stability	А	0.07
Temperature nonuniformity	А	0.06
DUT hysteresis	А	0.15
DUT drift	А	0.0
DUT noise and round-off	А	0.029
Combined standard uncertainty		0.227
Combined expanded uncertainty, k=2		0.454

Testing the calibration system

- Observed repeatability of calibration
- Compared with single-sensor calibration
- Compared the humidity generator with a dewpoint hygrometer

Results

- Uncertainty analysis showed the calibration system can be expected to meet the accuracy requirements
- Testing showed errors are within the expected range
- The calibration system met the reliability, through-put, and convenience requirements of manufacturing

Thank you.

Questions?