

INFRA RED BASICS

IRT Calibration

IR Calibration Challenges

- Describe the principles underlying non-contact temperature measurement
- Emissivity
- Calibration geometry
 - Spot size
 - Distance from temperature source
 - Size of Source
- Radiometric traceability
- Background temperature and humidity
- Introduction to new calibrators

Radiation Thermometers

• Temperature causes the surfaces of objects to radiate light in many colors

• Intensity of the colors of that light depends on temperature

 There is a pattern in the intensity of the colors that makes radiation thermometers possible

• To "emit"...

Hart Sc

Light Waves

Hart Scientific

400 nm

Important ranges...

0.4 to 0.7 μm 0.7 to 1000 μm 0.7 to 14 μm 8 to 14 μm

Electromagnetic Spectrum

Hart Scientific

Radiated Power & Temperature

Spectral Radiance

- "Optical brightness" = "spectral radiance" = "energy level"
- Varies with temperature and wavelength
- Independent of distance and surface size
- Every object is unique
- Depends on emissivity

Emissivity

 Ratio of spectral radiance of a real surface to that of an ideal surface

FLUKE

- Example
 - Perfect emitting body: 10,000W/m²
 - Real surface: 9,500 W/m²
 - Emissivity = 0.95
- Blackbodies absorb light
- Objects at equilibrium absorb and emit at the same rate

Kirchoff's Law

Hart Scientific

- Of energy received, %Emitted + %Transmitted + %Reflected = 100%
- Transmission assumed (and usually is) 0 at the wavelength of interest
- Example

If emissivity = 0.95 then 5% of ambient energy is not absorbed and emitted – rather, it is reflected.

Troublesome conditions:

 Low emissivity (low signal-to-noise)
 Very cold temperatures
 Much hotter emitter nearby

Energy Received Goes...

Hart Scientific

Emissivity / Apparent Temperature

Hart Scientific

Wavelength Dependence

- Emissivity depends on wavelength, so emissivity must be determined at a specific wavelength
- To be useful, a calibrator must be calibrated at a documented wavelength
- Theoretical blackbodies and graybodies have constant emissivity
- Non-graybodies do not

FLUKE

Emissivity Matters

Hart Scientific

Left Side: Bare Metal (ϵ =0.2) Right Side: Painted (ϵ =0.95)

Why does one side look colder?

IR Thermometer Accuracy

- Historically difficult to make accurate measurements
- Historically good for high temperatures, difficult-toreach objects, sterile objects, moving objects, and diagnostics
- Improvements important to
 - Medicine
 - Food storage
 - Process control
 - Preventive maintenance

Infrared Thermometers are Special

Hart Scientific

Good news: based on laws of thermodynamics

 Remember, this is for non-contact thermometers! -The surface of the object is the sensor!

Hart Scientific

IR Radiation From the Target

Transmission Through Air

Hart Scientific

- Air between the object and the detector is a problem
- Transparency depends on wavelength
- Water vapor and carbon dioxide absorb radiated energy
- Scatter from dust and dirt
- Unwanted radiation from warm particulates
- Reflection of light from warm bodies nearby
- 8-14 a fair solution, but distance matters

Transmission by wavelength

Wavelength in micrometers

Optical Scatter

Hart Scientific

SENSOR

Calibration Geometry

Hart Scientific

Laser guides misleading?

- Field of view is a cone, so spot grows with distance
- Distance-to-spot ratio
- Fuzzy spot, peripheral vision, scatter

Size of Source Has an Effect

Practical Graybody Calibrators

- Typically (always until now!) contact calibration with PRT or TC
- Calibrating internal control probe and not the surface
- Thermal losses at the surface should be corrected for
- Emissivity should be accounted for
- Remember... Knowing the emissivity of the source is critical

Hart Scientific

Radiometric 1

A Better Way: Include the Sensor!

- Reference pyrometer
 - Calibrated with blackbodies near E = 1.00
- Account for emissivity, wavelength, and surface temperature in the...

FLUKE

- calibration of the reference
- calibration of the source
- calibrations done by the source
- More accurate than contact cal for non-contact calibrator
- Targets calibrated with traceable reference IRTs provide traceable calibrations – targets calibrated through contact or surface sensors do not!

IR Traceability

Radiometric Calibration = Traceable Calibration

Hart Scientific

Contact Calibration

Radiometric Calibration

Reference

radiometer

Summary

- Surface is the sensor emissivity must be understood and accounted for
- Field of view not what it appears to be and manufacturers know it. Size matters!
- Calibration geometry matters.
- Contact thermometers don't make for traceable non-contact thermometer calibrations

Ideal Source for IR Thermometer Calibration

Hart Scientific

Two products

- 4180: -15°C to 120°C
- 4181: 35°C to 500°C
- High accuracy based on apparent temperature:
 - 4180: ±0.25°C to ±0.55°C
 - 4181: ±0.30°C to ±1.50°C
- Target size of 15 cm (6 inches)
- Variable emissivity from of 0.9 to 1.0
- Fully accredited radiometric calibration

New! 418X Features and Benefits

Features	Benefits
Six inch (152 mm) Target Size	Accuracy and consistency (size-of-source effect), Also correct size for thermal imager calibration
Radiometric Calibration (accredited)	Accuracy, consistency, traceability,
Stable and uniform target	Calibration accuracy and consistency
Compensation for thermometer emissivity setting	Easy to use (eliminates difficult mathematics), Simplifies variable emissivity calibration, Solves critical traceability issue
Stability icon and alarm	Visually and audibly indicates when ready for measurement

Hart Scientific

Easy to use display

 See key data such as the temperature, emissivity settings, and graphic stability indicator on the main display

• Easy to navigate menu driven interface

Emissivity compensation

- Thermometer emissivity settings cause errors if they don't match the target
- Emissivity-related corrections can be performed automatically by these new calibrators

Unique target cover

- Prevents frost from affecting target emissivity
- Optionally use with dry-air or nitrogen for improved results

Questions?

