CTS

 Instruction: WW-XYYY.a 8/15/97

Fasor Technical Services Inc. Validation Template 24 November
 2001

	Written By:

Zippy
	Title:

Neat Useful Thing

	Validated By:

Some other Guy
	Approved By:

(Your Boss) DRAFT

1. Purpose

This template is not intended to any official position regarding regulatory compliance. It is provided to assist developers in validating software created in COTS, MOTS, and Custom.software. This technique is described in ftp://www.fasor.com/validation/adequate_for_use.pdf It will assist with compliance related to the following software validation clauses in ISO 17025;

5.4.7.2(a) – “computer software developed by the user is documented in sufficient detail and suitably validated ············.

5.4.7.2 Note – “Commercial –off-the-shelf software in general use, within their design application rage, may be considered suitably validated. However, software configuration/modification shall be validated.

5.5.2 – “Equipment, and its software············shall be capable of achieving the accuracy required·········. Before being place in service, equipment (software) shall be calibrated or checked to establish that it meets the labs requirements·············.

The software validation note allows labs to take credit for assumed validation efforts made by the manufacturer of purchased software but requires that individual spreadsheets, macros, and all configuration/modifications/setups be validated.

2. Concept of Operations

A short paragraph should describe a high level overview (vision) of what the software will do.

3. Risk Analysis

What is the risk of using this software? Describe any risks of using this software to either quality system or test results.

4. Environment

How does the software fit into the lab test environment? What will interface with the software, GPIB, Ethernet, other test equipment? How does this affect the software?

5. Functional Requirements

5.1. Requirements should be written in user terms. Do not confuse requirements with design or configuration. Keep to what you need the software to do.

5.2. The software shall bla bla bla.

5.3. The software shall jump up and down.

5.4. The software shall spit wooden nickels.

5.4.1. Types of requirements include;

a. Layout

b. Input validation (edit checks)

c. Fault tolerance

d. Logic

e. Math

f. Security

g. Permissions and roles

h. Interfaces

i. Response time

j. Loading (how many simultaneous users)

Note: Type notes using notes style. It puts “note” in front of paragraph & centers.

6. Software Design or Configuration

Custom software should be described in developer terms. The purpose of the design is to allow others to be able to understand the code long after the project is complete. Discuss designs in terms of modules and order them by process flow; input-processing-output.

There is no design or configuration necessary regarding pure COTS software. This section can be N/A. The only items required are requirements and some user acceptance testing.

MOTS software should have all of the modifications/configurations/setups listed here. Some configuration is GUI as they are defined in configurations windows. In this case paste the configured windows into this section.
Include full paths to all referenced software objects. Make software objects in TT Courier New 12 pt - Bold.

6.1. The goes-into module does this

6.2. The number crunching module does this

6.3. The goes-outa module does this

6.4. Data Flow Diagram

Paste a VISIO type flowchart here of the data flow and how all modules interact.

7. Test Plan and Scope

7.1. Test Purpose
Download a copy of the SWEBOK Knowledge Area Description of Software Testing http://www.swebok.org/stoneman/version09.html It gives good references to software testing techniques.

7.2. These are some suggestions to testing simple products.

7.2.1. There are two (2) methods of validating PC and UNIX software utilities (applets).

a. Validation Method one (1) shall consist of applets that provide user feedback confirmation of each executed program step. This method is “user verified” during each use that conforms to a written requirements specification.

b. Validation Method two (2) shall consist of a test plan/specification that will exercise the software applet, verifying against a written requirement/software specification, that it is functional.

7.2.2. The un-compiled software should be stepped through and documented by signature and date of each module on the record copy.

7.2.3. The compiled software or scripts should create LOG files or some type of output. These output files should be annotated and documented by signature and date.

7.3. Test Scope

There are many phases of software testing. Discuss Unit, Integration, System, and user acceptance testing.

7.4. Test Exclusions
7.4.1. What you are NOT testing and why it is acceptable.

8. Test Specifications & Cases

8.1. Test Result Recording
8.1.1. How are you going to record your test results?

8.2. Test Exception Handing
8.2.1. What are you going to do with the failures? Ensure all failures are identified and retested after the software is reworked.

8.3. Tests
8.3.1. Unit Tests – typically by the developer. For CUSTOM software only

8.3.2. Integration Tests – typically by the developer and separate test team. For CUSTOM software only.

8.3.3. System Tests – typically by a separate test team. For CUSTOM and MOTS software.

8.3.4. User Acceptance Tests – typically by the user. For all types of software.

8.3.5. Functional types

8.3.6. Structural types

8.3.7. Testing for program limitations, negative values, missing data, boundaries, etc.

8.3.8. Interface testing. If a GPIB cable disconnects, does it affect the software?

8.4. Test Data
Include all test data here or point to where test data is stored. Enough data is required to enable someone else to repeat the test.

8.5. Test Result Analysis and Reporting
Summarize the testing here. Any test cases that are not repaired should be discussed as to the affect on the released product.

9. Resources (if you feel this is pertinent)
9.1. Personnel
9.2. Facilities
9.3. Schedule
10. Version Description Information (VDD)

10.1. Put information about the particular version here. Make it a cumulative list. Include discussion of what features were enhanced, fixed, or added.

10.2. Create a versioning scheme and follow it.

11. Operations/Maintenance/Training/User Instructions

11.1. How to install

11.1.1. Discuss any quirks of installing the software. Include information of how to install over old versions. Also include instructions on how to back out an upgrade.

11.2. How to Maintain

11.2.1. Include anything pertinent here such as emptying log or date files.

11.3. How to Train

11.3.1. This may be important if the software is to be used by all personnel in the lab.

11.4. How to Use

11.4.1. This information can be contained in another instruction.

C:\D\U drive Briefcase\A2la\Validation\Validation_Template.dot

1 of 1
 2 of 4

