
metrologia

Confidence-interval interpretation of a measurement pair
for quantifying a comparison

B. M. Wood and R. J. Douglas

Abstract. We present a method for applying the results from a pair of comparison measurements, made in two
laboratories, to form a confidence interval needed to support equivalence statements. Only the usual assumptions
indicated in the ISOGuide to the Expression of Uncertainty in Measurementabout the interpretation of the
means and combined standard uncertainties are required. The method is mathematically rigorous and can be
used to calculate the interval to arbitrary precision for any confidence level. It can also include the effects of
correlations and degrees of freedom. Simple graphical and numerical methods of practical accuracy are presented
for commonly used confidence levels. The method permits statements for clients to be made of the form “On
the basis of comparison measurements [reference] performed in the period of [date to date], the results of similar
measurements made at [Laboratory 1] and [Laboratory 2] can be expected to agree to within , with 95 %
confidence”. We derive and discuss the first rigorous justification for this type of statement.

1. Introduction

The Guide to the Expression of Uncertainty in
Measurement[1] forms the basis for communicating
measurement uncertainties. It recommends the use of
the combined standard uncertainty for expressing the
uncertainty in a measurement. However, neither the
Guide, nor currently published practices of national
[2, 3] or international metrology organizations [4-6],
recommend a single-parameter description to express
the degree of agreement between the measurement
results of even the simplest comparison. The simplest
comparison consists of just a pair of measurements of
an exchanged artefact, one measurement made in each
of two laboratories. We refer to this as a measurement
pair and develop a way to evaluate and express its
information.

The full information of any set of measurements
is contained in the original data and the detailed
uncertainty budget prepared by the metrologist
involved. The great usefulness of theGuide is to
structure an uncertainty budget such that all the
uncertainty components can be combined in a consistent
and reasonably rigorous manner to describe the mean
and the combined standard uncertainty of the set of
measurements. This is a two-parameter representation
of the total information in a set of measurements.
Sometimes, these two parameters must be supplemented
with the effective degrees of freedom and with
covariances. This multi-parameter description of a set
of measurements is the most commonly accepted form
in metrology.
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Despite the wide acceptance of theGuide’s multi-
parameter description, other descriptions of the total
information are also useful, especially for presentation
to a more general audience which does not want to
be concerned with all (or any) of the metrological
complexities. TheGuide recognizes this fact, and
recommends the use of a confidence interval to describe
a measurement and its uncertainty as the confidence
that the measurement is contained within the quoted
interval. TheGuide goes further and recommends the
terminology of a coverage factor,, to calculate an
appropriate confidence interval.

Metrological comparisons are performed to test and
quantify the agreement of measurements performed in
different laboratories. Typically, an artefact is trans-
ported in turn to several laboratories, to have its
particular quantity measured by each laboratory. The
measurements are referred to the same system of units,
usually the International System of Units (SI), although
different techniques of realization may be used in the
different laboratories. The comparison may be useful in
determining whether any difference is due to mistakes,
differences in interpretation, random occurrences or
unknown causes; but the primary purpose of the
comparison is still to test and quantify the agreement of
measurements. While it may be hoped or even believed
that the laboratories are measuring the same quantity
in the same units, the greatest utility of the comparison
can be obtained if we allow for the possibility that
the measurements may be very different. To allow for
the possibility of a difference, we do not assume that
measurements from different laboratories are sampled
from a single distribution. Each laboratory is sampling
from its own distribution and we initially treat each
laboratory’s distribution as independent no matter how
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similar it may be to another laboratory’s distribution.
Departures from independence are treated rigorously by
considering correlations in the uncertainty budgets.

A multi-laboratory metrological comparison can
be interpreted in many ways. For example, an interval
which encompasses all the results might satisfy some of
the less-demanding users, but it does not express how
closely the more tightly grouped laboratories might
agree. Creating subsets of this interval, sometimes
referred to as banding, could be done, but again these
intervals do not properly express how closely a smaller
set or pair of laboratories might agree. The only way to
describe the smallest interval of agreement warranted
by the particular measurements is to consider each
measurement pair. In the most general case this includes
all the pairs of measurement results of the comparison.
Of course, this requires up to
descriptions for a comparison involving laboratories.
Another type of comparison pair could consist of
an individual laboratory’s measurements compared
with an arbitrary value, such as an interlaboratory
mean, determined with various weightings for the
different laboratories. Each weighting would lead to
another comparison pairs to be considered, each a
minor variation of the same pair-comparison problem.
Comparisons among twenty or more laboratories are not
uncommon and this emphasizes the need for an easily
calculated, rigorous and widely accepted quantification
of the equivalence of the measurement pairs. The effort
put into these comparisons and their importance demand
that the interpretation of each measurement pair be
defined as well as the measurement results warrant.

Any interpretation of comparison measurements is
constrained by what actions either laboratory takes on
the basis of the measurement results. In particular,
laboratories may, or may not, decide to adjust their
reference values on the basis of the results of the
comparison. These two cases are different and must be
interpreted differently. This paper considers a method
applicable to the general situation in which each
laboratory does not alter its reference values after the
comparison. The case in which one laboratory adjusts
its reference value by the difference between its results
and another laboratory’s results can be treated as a
particular instance of the general method.

Our goal is to reach the broadest clientele, for
whom it is most appropriate to use a confidence interval
describing the agreement of a pair of measurement
results. We propose the following principles for the
interpretation of comparison results. The interpretation
should:

• quantify the level of agreement;

• describe the best possible agreement warranted by
the measurement results;

• be able to treat each measurement result indepen-
dently: each having its own distribution;

• accommodate any measurement pair described in
accordance with theGuide, even those which fail
the usual null-hypothesis tests [4-6];

• be able to treat effective degrees of freedom, co-
variance terms and non-normal distributions;

• be expressed as a single parameter to communicate
most effectively the level of agreement.

We adopt the basic perspective of theGuide, that the
measurements of the comparison are each described by
a parameterized distribution. It is important to consider
the sensitivity of this interpretation with respect to these
parameters. Although no general interpretation can
recreate the information lost by mistakes that perturb
the means or by unrealistic or incorrect estimations of
the uncertainties, our approach is robust in some cases
of concern. The consequences of invalid assumptions
of the means and the uncertainties are reviewed in the
discussion of Section 3.

2. Confidence interval analysis
of a measurement pair

Confidence intervals provide a rigorous and easily
understandable single-parameter description of a
comparison using concepts developed in theGuide.
Confidence intervals are not recommended by theGuide
for expressing the uncertainty in a single measurement,
but are reserved for use as a tool to interpret the
uncertainty for the broadest possible client base. In the
context of measurement comparisons, the confidence-
interval interpretation avoids the conceptual difficulties
of interpreting the comparison as a pass/fail test of the
null hypothesis.

Consider the measurement results of just two
participants of a comparison. We refer to this as
a measurement pair. For this comparison suppose
that each laboratory has measured the same artefact,
and the measurements result in two means and two
uncertainty budgets. Each budget details the combined
standard uncertainty, the effective degrees of freedom
and sufficient information so that any important
covariant items common to each uncertainty budget
can be identified. There should also be details of any
probability distributions that are not assumed to be
normal.

Each laboratory’s parameters are used to define
a continuous probability distribution best describing
the measurement. Typically each distribution will be
normal, centred on the mean, , with the combined
standard uncertainty, , characterizing the width of the
distribution and having effective degrees of freedom.
Non-normal distributions may be treated as discussed
in Appendix A, if they are adequately described as
recommended in theGuide.Covariances are also treated
in Appendix A where the equations are derived more
rigorously and include covariance components. The
effect of degrees of freedom is described separately in
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Appendix B. Both effects can be determined as well as
they are characterized within the individual uncertainty
budgets but in the interests of clarity we have omitted
these effects from this section.

The continuous probability distributions describing
the measurements are for Laboratory 1 and
for Laboratory 2. and are allowed to be
independent and thus use different arguments,and .
The probability that Laboratory 1 measures the quantity

between and is and similarly
for Laboratory 2. We are interested in the probability
distribution of the difference of a pair of measurements,
estimated from the measurement pair with as the
variable. If then the probability that lies
between and is . In the absence of
correlations is a convolution of and . If
and are uncorrelated normal distributions, thenis
also a normal distribution centred at and
with a width characterized by the root-sum-square of
the combined standard uncertainties, .
Appendix A re-derives this probability distribution more
rigorously and illustrates it graphically.

The probability distribution, , is now adequately
characterized and ready for interpretation. As indicated
in the introduction, we wish to determine the confidence
interval within which the means of Laboratory 1
and Laboratory 2 would agree. Such an interpretation
could, for example, give assurance that the probability
that within is 95 %. The confidence
interval is determined by integrating the probability
distribution symmetrically from 0 to until the
desired probability, , is reached. It is important to
note that the integration is not centred on the peak
of the distribution so the confidence interval, , is
dependent on both the difference between the means
and the combined standard uncertainties (see Figures 1
and 2).

For the usual type of comparison, the degrees
of freedom, and , will be large. In this case
the original estimates about the detailed shape of
and will be unchanged by considerations of the
sampling limitations. If, as is generally the case,
and were assumed to be normal distributions then
they can still be represented by the same normal
distributions. Consideration of the effects of smaller
degrees of freedom is given in Appendix B. For normal
distributions, at a particular degree of confidence,
the confidence-interval is , and is determined by
solving the equation

(1)

The variation of the confidence interval, , with
normalized difference of the means, ,

Figure 1. Quantified equivalence for 68 %, 95 % and 99.5 %
confidence. A measurement pair with means1 and 2;
and with a combined standard uncertaintyp 2

1

2

2

1=2

gives the confidence interval, C C . The variation of
C p with normalized difference 2 1 p is plotted

for the three confidence levels.

is shown in Figure 1, for three confidence levels:
68 %, 95 % and 99.5 %. The confidence interval
starts at the expected values near one sigma, two
sigma, and three sigma, and approaches asymptotes
of , , and

.
We believe that the 95 % confidence level is

appropriate for most clients’ needs and for that
confidence we have fitted a function which is simple to
calculate and is accurate to better than 1 % of :

(2)

Equation (2) allows the confidence interval to be
simply determined with a hand calculator or spreadsheet
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Figure 2. Probability density for a pair of
measurements and , with means 1 and 2. is
the complete description of the joint probability. Following
the Guide, may be estimated from the two means,
the standard uncertainties and their correlation coefficient.
The confidence level for quantified equivalence within a
band C is obtained by integration of the probability
density in this band, centred on . Also shown are
the projections of onto the probability densities
for measurements by the first laboratory1 , and by
the second laboratory2 ; and for the measurement
difference 3 (scaled to fit this diagram).

program. Figure 1 or (2) allow the confidence interval
to be determined simply with sufficient accuracy for
any practical comparison.

As an illustration, it may be useful to consider the
method as it applies to two extreme situations.

(a) If then the confidence interval is
determined by integrating a normal distribution,
which has a width characterized by

, symmetrically about the peak of the
distribution. As one would expect, the confidence
interval, , is given by the coverage factor times
the root-sum-square of the combined uncertainties.

(b) If then the expected difference
of the means is and is independent of
the confidence level that is sought. Thus

if the difference between the means is
very large, again as one would normally expect.

There is one caution concerning the use of any
confidence interval:the confidence interval must not be
treated as if it were a standard uncertainty. As shown
in Figure 1, the scaling of from one confidence
level to another depends on , on and
on both the initial and final confidence levels. It cannot
simply be scaled with a multiplicative factor. For clients
requiring an understandable assurance of equivalence,
most would be satisfied with the choice of ,
this being the commonest confidence level used in the
literature and promoted by theGuide.

Figure 1 also illustrates that the normalized
difference of the means: (or “normalized
error”, which is used as a figure of merit for null-

hypothesis tests [4-6]) is not suitable as the single
parameter for quantifying equivalence. The normalized
error can be used with a criterion for equivalence, but
still requires to interpret the equivalence in units of
the measurand. For doing this, a simple “rule of thumb”
has been proposed [7]. It approximates two limiting
cases: and .
A “degree of equivalence” is assigned the value
for comparisons which have , and
is assigned the value for comparisons
which have . Our analysis shows
that this rule of thumb estimates the 95 % confidence
interval correctly for the two asymptotic cases, but also
can significantly underestimate it. The worst case is at

where it is 0.54 of the true value.
In return for the small computational burden of (2),
[or (B2) to account for finite degrees of freedom], our
method also offers the advantages of:

• rigour for making explicit statements to clients about
demonstrated confidence for equivalence;

• universality for describing all measurement compar-
isons for which the uncertainties in both measure-
ments are adequately described in accordance with
the Guide; and

• efficiency in promptly and usefully interpreting all
results, even those which fail null-hypothesis tests.

2.1 Application – interpretation of international
comparisons by pair analysis

International comparisons are regularly used to assess
and monitor measurement equivalence in different
countries. This is of importance in trade, manufacturing
and other sectors relying on high accuracy in any
measured parameter. National standards laboratories
are usually involved at the highest levels of
measurement accuracy and international comparisons,
typically organized by the Bureau International des
Poids et Mesures through the appropriate consultative
committee, are performed for important quantities to
demonstrate that such measurements are in agreement.
The national laboratories have developed different
levels of capabilities to service the needs of their
countries and as a consequence comparison results often
vary widely in their uncertainty claims and occasionally
in their mean values. The interpretation of international
comparisons using this confidence-interval method has
the following advantages.

• The method provides a rigorous confidence interval
describing the agreement of the means between
every pair of participants.

• It can use simple uncertainty budgets, and yet
can accommodate fully detailed uncertainty budgets
and rigorously treat correlations, finite degrees of
freedom and non-normal distributions.
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• It can be adapted to different levels of confidence
as required.

• It allows equivalence between two parties to be
quantified as closely as the measurement pair results
warrant.

• It does not impose on any pair an inflated agreement
interval that includes other participants’ larger
uncertainties.

• It applies equally well to laboratories with very
similar means and uncertainties, and to laboratories
with very different means or uncertainty claims.

• It does not require knowledge of the “key
comparison reference value” or details of how this
value was derived.

• The procedure is simple, very easily calculated and
applicable to any type of comparison.

• The procedure does not require committee eval-
uation, but instead directly uses the information
as provided by the metrologists involved, i.e. the
participants in the comparison.

• The procedure provides a quantified equivalence
even for comparisons which would fail to give any
formal agreement with interpretations [4-6] based
on the null hypothesis.

• The procedure easily re-evaluates comparisons at
a later date for audits, for new staff and for new
agreements.

• The procedure can be easily adapted to include other
parties at a later date (see below). This will be very
important as comparisons become larger and include
different regional metrology groups.

The appropriate consultative committee may choose to
adopt some kind of interlaboratory mean value with
which to reference all the comparison results. This
value may be defined as the mean of the comparison
results, either as a weighted or as an unweighted mean.
Constraints to avoid excessive reliance on the results
of any one laboratory may also be used. This type
of reference value can have a real significance as a
consensus value of the SI unit, or instead it might be
regarded as an arbitrary, interim value when consensus
has not been reached. This value would normally have
its uncertainty and its effective degrees of freedom
specified. Unfortunately, it will also have correlations
with each of the constituent measurement results. In
a typical multilaboratory comparison the consultative
committee would usually have to consider all of these
parameters. Our measurement pair analysis can easily
determine a confidence interval in this situation by
considering each laboratory in turn, compared with
the reference value as the other “laboratory”. One
consequence of adopting a reference value is to
increase the total number of measurement pairs from

to . For some applications
a lesser number of measurement pairs might suffice.
The comparisons of each laboratory with the mean
value, taken as a set, may superficially appear inviting;
but in single-parameter form they are not capable of
quantifying the best possible agreement warranted by
the measurements of any two participating laboratories,
nor can they treat significant covariances correctly.

2.2 Application – assessment of two laboratories
indirectly through a third common laboratory

This method may be applied to quantifying the
equivalence of two Laboratories (1 and 2) indirectly, by
each performing comparisons with a common third or
“vertex” Laboratory (3). Thus direct comparisons are
not required for quantifying equivalence between
laboratories in a study, and bilateral compar-
isons can generate bilateral equivalence
statements. Furthermore, if a new laboratory wishes at
a later date to demonstrate equivalence with these
laboratories, the new equivalence statements may be
derived from just one new measurement pair.

The mean value of the vertex laboratory
will have uncertainty . In the comparison with
Laboratories 1 and 2, using a pair uncertainty of

will usually overestimate the uncer-
tainty. The uncertainty contribution of Laboratory 3
may be better than this due to its stability. Its stability,
represented by a smaller standard uncertainty, is
estimated from its uncertainty budget by removing (in
quadrature) all uncertainty terms known to be fully
correlated between the first and second measurements
in Laboratory 3, but retaining the travel uncertainty,
all randomly sampled uncertainties and any re-sampled
distribution which is not known to be fully correlated.
Inversely correlated terms will be rare, but must not be
removed since they will contribute to the variance
of the difference. Partially correlated uncertainty terms
can be treated by separating them into correlated and
uncorrelated parts.

Let be the distribution obtained
by the convolution of and . The stability
of a measurement in Laboratory 3 is described by the
distribution with a standard uncertainty of .
The difference in two measurements in Laboratory
3 will be described by the distribution

, after all known deterministic biases have been
removed. It will have a standard uncertainty .
Then the distribution expressing the comparison of
Laboratories 1 and 2 through Laboratory 3 is given by

. The confidence
interval for the equivalence of Laboratories 1 and 2 is
obtained by symmetrical integration of this distribution
about . For normal distributions, the combined
standard uncertainty for comparisons through a vertex
laboratory is . To calculate a
confidence interval from and (really
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and assuming )
we may use Figure 1, or (1), or (2).

Indirect comparison allows a group of laboratories
to quantify equivalence efficiently. Indirect comparison
gives a somewhat larger than might have been
obtained in a direct comparison. If the vertex laboratory
has stability equal to or better than the entire uncertainty
budget of the other two laboratories, then the indirect

can be up to worse than for the direct method.
This will be the case if travel uncertainty dominates.
If the stability of the vertex laboratory (including
travel) is half the overall uncertainty of the other two
laboratories, then the degradation is no worse than
12 %, or 5 % if it is predominantly travel uncertainty.
Normally the vertex laboratory and the artefact will be
chosen to minimize this degradation. A somewhat larger

may be considered a small compromise to reduce
the comparison measurement workload by a factor of
between and (which is often more than 10).

3. Discussion

It is interesting to note that this one-parameter
description of equivalence will not have the character
of a metric in a vector space, and so could not
rigorously support an ordering of comparisons from
“best” to “worst”. It only describes equivalence and
thus can convey no information concerning whether,
for example, it is “better” to arrive at a given level of
equivalence with a small difference in the means and
a large uncertainty, or with a larger difference in the
means and a smaller uncertainty. This type of question
does not impinge on equivalence, and remains a subject
for investigation by metrologists, who would probably
be happier with the former case and regard the latter
case as implying that there is something in at least
one uncertainty budget which is not being evaluated
properly.

Because the effective degrees of freedom is
never infinite, the consequence of ignoring the effect
of a limited number of degrees of freedom is to
underestimate the size of the combined uncertainty
used to calculate the confidence interval. A rough
estimate of that underestimation is obtained from the
ratio of the integrals of the Student’s distribution

(see Table G.2 of theGuide). The
correct treatment is presented in Appendix B.

Because almost all correlations have a positive
value of correlation coefficient and represent a relatively
small fraction of the total uncertainty, the typical
consequence of ignoring the effect of correlations is
to obtain a slightly larger confidence interval than
would have been obtained if the correlations were
properly assessed. For fully correlated individual terms,
the correlation can easily be handled in the distribution
of the difference by removing fully correlated
uncertainty terms from the two uncertainty budgets.
A detailed treatment is presented in Appendix A.

It is important to consider the implications of
interpreting the confidence interval of a bilateral
comparison with contentious results. When contentious
results are reported from two metrologists – each of
whom has claimed to have given his best estimate of
the mean, standard uncertainty and degrees of freedom
– a third party can still properly construe as the joint
best estimate of the confidence interval for agreement.
Since each metrologist has claimed that his results are
“correct”, or at least his best estimate, then the only
additional assumption that the first metrologist must
make to quantify the equivalence is that the second
metrologist is reporting correctly his mean, standard
uncertainty and degrees of freedom.

In comparisons, it is usually possible to employ
unknown artefacts to ensure that the mean is reported
without bias, and so on average the difference of
the means will be properly accounted for within
the confidence interval. There is less assurance with
respect to standard uncertainties, where unreconciled
disagreements are not unknown. For describing
equivalence between the two laboratories, the greatest
concern of the first metrologist is probably that the
second metrologist might underestimate or under-
report his standard uncertainty. Interestingly, in the
case where two laboratories have roughly equal
capabilities, the confidence interval is relatively robust
to possible under-reporting of the standard uncertainty
by one laboratory. If one laboratory underestimates
its uncertainties, then on average should reflect
this fact by having included the variation in the
difference in the means, as well as the other laboratory’s
reported uncertainty. For two otherwise identical
comparison results the effect of underestimation of
one of the uncertainties would result in, at most, a
reduction of (about 30 %) of the confidence
interval. We believe that a 30 % relative precision
is usually sufficient for the practical purposes of
equivalence agreements. This robust characteristic can
be a significant consideration in minimizing concerns
about the degree of equivalence demonstrated by a
comparison.

4. Conclusions

For any measurement comparison between two
laboratories, a single parameter can be determined that
quantifies their bilateral equivalence in a form suitable
for equivalence agreements. The confidence interval
can rigorously incorporate both the standard uncertainty
and the difference in the means revealed by comparison
measurements, as well as the effects of correlations and
of limited degrees of freedom. This single-parameter
interpretation is also applicable to comparisons utilizing
an interlaboratory mean.

The measurement pair analysis naturally leads to an
interpretation for multilaboratory comparisons without
the need for an interlaboratory mean value. Each
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member of a group of participating laboratories
determines individually quantified equivalence
statements. Each of these bilateral statements is robust
in the sense that it is unaffected by the uncertainty
of a third party. Each of the statements is in a
form suitable for approval as an equivalence agreement.
By working through a vertex laboratory, a participating
laboratory may obtain equivalence statements
after making only one measurement.

For the pilot laboratory making or perhaps fewer
measurements, the preparation of the
confidence intervals can be wholly automated and yet
incorporate the consequences of known interlaboratory
correlation and the effects of limited degrees of
freedom.
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Appendix A

Derivation of the confidence interval
with covariances included

In this Appendix we derive (1) in sufficient detail to
make its rigour accessible to anyone familiar with
elementary probability and calculus. We believe that
this level of detail is warranted by the wide variety of
technical backgrounds represented by clients who are
served by equivalence statements, and their possible
scepticism of results which they cannot simply find in
statistics textbooks.

The statistical basis underlying theGuide is
that for measurement of a physical variable, the
sources of measurement uncertainty are to be evaluated
by the measurer and quantitatively represented by
a continuous probability density function, .
The subscript 1 is used to denote measurements
at Laboratory 1. Usually the appropriate functional
form is a normal or Gaussian distribution

p , where is the
mean of the measurements ofand where is the
standard uncertainty in .

For comparisons, we also consider measurements
made by Laboratory 2 on the same artefact. These
measurements are allowed to be independent of
and measure what is construed to be the same
physical quantity, but referred to by the variable

and subscript 2. The measurement uncertainty
is evaluated and is represented by the continuous
probability density function . Usually a normal
distribution is appropriate here, too:

p , where is the
mean of the measurements ofand is the standard
uncertainty in . It is easy to see that the standard
uncertainties and are different in general, so that

and must be different distributions. It is more
subtle to appreciate that for quantifying equivalence,
one should also initially allow to be different from

, and that and must be different distributions
in this respect. The distributions are regarded as distinct
in at least these two respects.

For all possible pairs of measurements ,
the two-measurement generalization of theGuide’s
probability density is a continuous function of both

and , . The probability of obtaining a
measurement betweenand is , and
the probability of obtaining a measurement between
and is . In the absence of correlations
between and , for obtaining both a measurement
from Laboratory 1 between and and
a measurement from Laboratory 2 betweenand

, the probability is the product of the probability
and the probability . Thus, in the

absence of correlations, . The
relationship between , and is
illustrated in Figure 2. is just the integral of

over all ways of generating the same(i.e.
the integral over all ); and similarly is just the
integral of over all ways of generating the
same (i.e. the integral over all ).

Even in the presence of correlations,
and . The effect

of correlation between the measurements of two
laboratories may be evaluated by simply examining
pairs of uncertainty components and , one
from each of the two uncertainty budgets. For each
component pair the effect of correlation is considered
as it affects , in particular its effect on . Each
pair will have a correlation coefficient and

(A1)

Most pairs will be considered to be uncorrelated,
and for these . In the context of interlaboratory
comparisons, the use of statistical methods to establish
correlation coefficients will usually be impractical. For
some pairs, however, simple inspection of the two
uncertainty budgets will reveal a good estimate of the
correlation coefficient.

For example, if both uncertainty budgets have
included the same component representing the same
travel uncertainty of the artefact then the effect of this
component pair has been “double counted” with respect
to . This effect of correlation could be treated by
removing the component from one budget or by means
of the correlation coefficient of this pair of components

.
Consider another example involving a comparison

of two optical frequency standards using a stable
travelling laser. Both uncertainty budgets could
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include the same uncertainty component owing to the
uncertainty of the absolute SI frequency of the travelling
laser. However, the uncertainty of the absolute SI
frequency of the travelling laser has no effect on
the uncertainty of the difference. For this pair of
components . This could also be treated
by considering modified uncertainty budgets for this
measurement pair in which this component is removed
from the budgets of both laboratories.

It is often convenient to characterize the correlation
coefficients, , and then to use a globalwith and

in the calculation of :

with

(A2)

We now develop a means of incorporating
correlations into . We wish to consider the
probability density of projected onto the
variable , by changing variables to
and , and integrating over . In the
absence of correlations betweenand , this gives
a probability density which is the convolution of
and , centred at rather than at

.* For normal distributions with correlations
between and (with global correlation coefficient
), the probability distribution in is

p , where
. Note that the distribution

is explicitly centred at rather than at
. The results of this integration along lines of

constant are illustrated in Figure 1 as ,
where the variable is is used so that
it has the same scale in Figure 2 as the diagonal
in the two-dimensional plot of – note that

.
The confidence level associated with a subsequent

similar measurement pair having its value of
in a range of from to is just the integral

of the probability density from to .
The commonest type of confidence interval is

not appropriate: one symmetrically situated about the
centroid of the known bias, estimated as . This
type is only appropriate when the measured value of

is to be subtracted out in any subsequent
comparison that is, when is to be compared with

. This procedure is not appropriate
when the measurements are hypothesized to be centred
elsewhere, as is the case for many clients dealing with
equivalence statements: their preconception is that the

* This distinction is crucial, since although the best estimate of
is 1 2, it is not the estimate normally contemplated

in equivalence statements, which retain the a priori estimate
that .

measurements made at the two laboratories should give
the same result, and we believe that they would be
best served by a simple, symmetric interval about
this preconception. Thus we are led to integrating
symmetrically about , to find the confidence
level of a result being in the interval to

. For normal distributions the confidence level
is expressible in terms of the cumulative distribution

p

where

(A3)

which can be solved iteratively for for any particular
value of .

More general forms of can be simply
handled by a two-dimensional integration, integrating
over the region from to , as shown
in Figure 2. Changing variables from to
and , with Jacobian , the integral in this
region over the probability density is

z

z

(A4)

This is the general form which can be used with
arbitrary probability density functions, and can include
the effects of correlations between and that go
beyond a simple convolution.
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Appendix B

Degrees of freedom

For most applications in metrology the degrees of
freedom has been a parameter which we have been able
to neglect. However, any method purporting to quantify
the level of agreement between national measurement
laboratories needs to be capable of rigorously handling
the degrees of freedom. Fortunately, theGuide is clear
enough to need only careful interpretation to evaluate
the confidence interval for agreement including the
effect of degrees of freedom, and we present our
interpretation here.

The Guide recommends the use of degrees of
freedom, , to describe a limited knowledge of the
standard uncertainty of a set of measurements. Its use is
explicitly recommended for any uncertainty component
evaluated by repeated measurement (simply the number
of independent measurements minus the number of
independent fitted parameters). For an uncertainty
component evaluated in other ways, the degrees of
freedom may be estimated from the uncertainty
in the uncertainty : . The effective
degrees of freedom, , of all uncertainty components
is evaluated by the Welch-Satterthwaite formula:

The probability density used to describe a
measurement is a Student’s-distribution with
degrees of freedom.

The Guide refers the reader to standard textbooks
on statistics concerning the Student’s-distribution for

degrees of freedom. This distribution applies to any
variable which is the ratio of two random variables [8],
with the numerator drawn from a normal distribution,
and the denominator drawn from an independent
random variable which is the square root of a random
variable distributed as with degrees of freedom.
For a sample of independent measurements that
are normally distributed, the ratio of the deviation of
the sample mean from the “true” mean to the sample
variance divided by may be shown to have
a Student’s -distribution, and it is in this pure Type A
form that the Student’s -distribution is most often
employed in metrology. If the variance is estimated
in any other independent way, by pooling results or
through Type B techniques, it is also possible to show
that the Student’s -distribution should apply. With
Type B methods the major concern usually will be over
the adequacy of the distribution as a description of
the variation of the uncertainty in the uncertainty.

For comparing measurement pairs, the uncertain-
ties are combined as , deliberately
omitting fully correlated uncertainty

terms in assembling and

, and the degrees of freedom

and
. The overall degrees

of freedom for the comparison is
, and the distribution

of the differences will be approximated by a Student’s
-distribution with degrees of freedom. It is

not necessary to truncate the degrees of freedom to
an integer. The probability distribution, , is again
given by the convolution of and , which is
approximately a Student’s-distribution with mean

, standard deviation and
effective degrees of freedom . As an additional
note, we believe that an estimate of the degrees of
freedom of the comparison, assembled in this way,
should be tested against the metrologists’ intuitive
appreciation of the uncertainty in the uncertainty:

. In general we would also
advocate taking the smaller of these two estimates
of the degrees of freedom of the comparison. The
effective degrees of freedom for the measurement pair
is given by which we simply refer to as .

With the above based closely on theGuide,
the only new element which we have to introduce
is the asymmetric integration of the Student’s
-distribution : its probability density function is

p , and
its cumulative distribution is for
a confidence level , forming a confidence interval

centred on the assumption that the means
are equal. Thus we solve for in the integral equation

(B1)

The confidence interval, , is obtained by
symmetric integration of about 0, until the 0.95
confidence level is achieved. Table 1 and Figure 3
illustrate the exact solutions of (B1) for a confidence
level of 95 %, and show the dependence of with

, , and .
A simple, but slightly restricted, numerical

approximation of including the effective degrees
of freedom is given by

(B2)

where

and
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Table 1. Quantified equivalence for 95 % confidence, including degrees of freedom. A measurement pair with means
1 and 2; with a combined standard uncertaintyp; and effective degrees of freedom,, gives the confidence

interval, C C . The values of C p are tabulated with respect to the normalized difference2 1 p

and the effective degrees of freedom= 1, 2, 3, 4, 5, 6, 8, 10, 14, 25 and.

2 1 p 25 14 10 8 6 5 4 3 2 1

0.0 1.96 2.06 2.14 2.23 2.31 2.45 2.57 2.78 3.18 4.30 12.71
0.2 2.00 2.10 2.18 2.26 2.34 2.47 2.60 2.80 3.20 4.31 12.71
0.5 2.18 2.27 2.34 2.41 2.48 2.61 2.72 2.92 3.30 4.38 12.73
1.0 2.65 2.71 2.77 2.83 2.89 3.00 3.09 3.26 3.60 4.59 12.78
1.5 3.15 3.21 3.26 3.32 3.37 3.46 3.55 3.69 3.99 4.91 12.88
2.0 3.65 3.71 3.76 3.81 3.86 3.95 4.03 4.16 4.44 5.28 13.01
2.5 4.15 4.21 4.26 4.31 4.36 4.45 4.52 4.65 4.91 5.70 13.18
3.0 4.65 4.71 4.76 4.81 4.86 4.94 5.02 5.14 5.39 6.14 13.38
3.5 5.15 5.21 5.26 5.31 5.36 5.44 5.52 5.64 5.88 6.60 13.60
4.0 5.65 5.71 5.76 5.81 5.86 5.94 6.02 6.14 6.37 7.07 13.85
5.0 6.65 6.71 6.76 6.81 6.86 6.94 7.02 7.13 7.37 8.02 14.43
7.5 9.15 9.21 9.26 9.31 9.36 9.44 9.52 9.63 9.86 10.47 16.17

10.0 11.64 11.71 11.76 11.81 11.86 11.94 12.02 12.13 12.36 12.95 18.18

Figure 3. Quantified equivalence for 95 % confidence,
including degrees of freedom. A measurement pair with
means 1 and 2; with a combined standard uncertainty
p; and effective degrees of freedom,, gives the confidence

interval, C C . The variation of C p with
normalized difference 2 1 p is plotted for
effective degrees of freedom= 2, 3, 4, 5, 6, 8, 10, 14,
25, 100 and .

The term is an approximation of the ratio of the
breadths of the 95 % confidence interval from the
Student’s -distributions with and infinite degrees
of freedom. This numerical approximation of
is accurate to within 6 % for in Table 1,
and should be sufficient for all practical purposes.
It has the added benefit of interpolating conveniently
for non-integer degrees of freedom. Equation (B2) is
simple enough be evaluated with a hand calculator
or spreadsheet program; it requires no integration or
iterative procedures; and it retains the same form as (2).
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