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Confidence-interval interpretation of a measurement pair
for quantifying a comparison

B. M. Wood and R. J. Douglas

Abstract. We present a method for applying the results from a pair of comparison measurements, made in two
laboratories, to form a confidence interval needed to support equivalence statements. Only the usual assumptions
indicated in the 1SOGuide to the Expression of Uncertainty in Measuremahbut the interpretation of the

means and combined standard uncertainties are required. The method is mathematically rigorous and can be
used to calculate the interval to arbitrary precision for any confidence level. It can also include the effects of
correlations and degrees of freedom. Simple graphical and numerical methods of practical accuracy are presented
for commonly used confidence levels. The method permits statements for clients to be made of the form “On
the basis of comparison measurements [reference] performed in the period of [date to date], the results of similar
measurements made at [Laboratory 1] and [Laboratory 2] can be expected to agree tqudthip), with 95 %
confidence”. We derive and discuss the first rigorous justification for this type of statement.

1. Introduction Despite the wide acceptance of tBaides multi-
parameter description, other descriptions of the total
The Guide to the Expression of Uncertainty in information are also useful, especially for presentation
Measuremen{1] forms the basis for communicating to a more general audience which does not want to
measurement uncertainties. It recommends the use ot concerned with all (or any) of the metrological
the combined standard uncertainty for expressing theomplexities. The Guide recognizes this fact, and
uncertainty in a measurement. However, neither théecommends the use of a confidence interval to describe
Guide nor currently published practices of nationala measurement and its uncertainty as the confidence
[2, 3] or international metrology organizations [4-6], that the measurement is contained within the quoted
recommend a single-parameter description to expresgterval. TheGuide goes further and recommends the
the degree of agreement between the measuremegiminology of a coverage factok, to calculate an
results of even the simplest comparison. The simplesgppropriate confidence interval.
comparison consists of just a pair of measurements of  Metrological comparisons are performed to test and
an exchanged artefact, one measurement made in eaghiantify the agreement of measurements performed in
of two laboratories. We refer to this as a measuremendifferent laboratories. Typically, an artefact is trans-
pair and develop a way to evaluate and express itgorted in turn to several laboratories, to have its
information. _ particular quantity measured by each laboratory. The
~ The full information of any set of measurements measurements are referred to the same system of units,
is contained in the original data and the detailed,syally the International System of Units (SI), although
uncertainty budget prepared by the metrologisyitferent techniques of realization may be used in the
involved. The great usefulness of thBuide is t0 gitferent laboratories. The comparison may be useful in
structure an uncertainty budget such that all thejetermining whether any difference is due to mistakes,
uncertainty components can be combined in a consistegtferences in interpretation, random occurrences or
and reasonably rigorous manner to Qescribe the megthknown causes; but the primary purpose of the
and the combined standard uncertainty of the set ofymnarison is still to test and quantify the agreement of
measurements. This is a two-parameter representatiQReasyrements. While it may be hoped or even believed
of the total information in a set of measurementSha the |aboratories are measuring the same quantity
Sometimes, these two parameters must be supplementdihe same units, the greatest utility of the comparison
with the effective degrees of freedom and withcqn he optained if we allow for the possibility that
covariances. This multi-parameter description of a Sefhe measurements may be very different. To allow for
of measurements is the most commonly accepted forr{he possibility of a difference, we do not assume that

in metrology. measurements from different laboratories are sampled
from a single distribution. Each laboratory is sampling
B. M. Wood and R. J. Douglas: National Research Council of from its own distribution and we initially treat each
Canada, Ottawa, K1A OR6 Ontario, Canada. laboratory’s distribution as independent no matter how
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similar it may be to another laboratory’s distribution.» accommodate any measurement pair described in
Departures from independence are treated rigorously by accordance with th&uide, even those which fail
considering correlations in the uncertainty budgets. the usual null-hypothesis tests [4-6];

A multi-laboratory metrological comparison can
be interpreted in many ways. For example, an interval
which encompasses all the results might satisfy some of
the less-demanding users, but it does not express how be expressed as a single parameter to communicate
closely the more tightly grouped laboratories might most effectively the level of agreement.

agree. Creating su_bsets of this interval, sometimewe adopt the basic perspective of tBeiide, that the
referred to as banding, could be done, but again the§geasyrements of the comparison are each described by
intervals do not properly express how closely a smallef, harameterized distribution. It is important to consider
set or pair of laboratories might agree. The only way tahe sensitivity of this interpretation with respect to these
describe the smallest interval of agreement warranteggameters. Although no general interpretation can
by the particular measurements is to consider eacfhcreate the information lost by mistakes that perturb
measurement pair. In the most general case this includege means or by unrealistic or incorrect estimations of
all the pairs of measurement results of the comparisoihe uncertainties, our approach is robust in some cases
Of course, this requires up taV x (N —1)/2  of concern. The consequences of invalid assumptions
descriptions for a comparison involviny laboratories.  of the means and the uncertainties are reviewed in the
Another type of comparison pair could consist ofdiscussion of Section 3.

an individual laboratory’s measurements compared

with an arbitrary value, such as an interlaboratory2. Confidence interval analysis
mean, determined with various weightings for theof a measurement pair
different laboratories. Each weighting would lead to

another N comparison pairs to be considered, each &onfidence intervals provide a rigorous and easily
minor variation of the same pair-comparison problemynderstandable single-parameter description of a
Comparisons among twenty or more laboratories are ngfomparison using concepts developed in tBaide
uncommon and this emphasizes the need for an easityonfidence intervals are not recommended byGhéle
calculated, rigorous and widely accepted quantificatioior expressing the uncertainty in a single measurement,
of the equivalence of the measurement pairs. The effobut are reserved for use as a tool to interpret the
put into these comparisons and their importance demanghcertainty for the broadest possible client base. In the
that the interpretation of each measurement pair beontext of measurement comparisons, the confidence-
defined as well as the measurement results warrant. interval interpretation avoids the conceptual difficulties
Any interpretation of comparison measurements iof interpreting the comparison as a pass/fail test of the
constrained by what actions either laboratory takes onull hypothesis.
the basis of the measurement results. In particular, Consider the measurement results of just two
laboratories may, or may not, decide to adjust theiparticipants of a comparison. We refer to this as
reference values on the basis of the results of tha measurement pair. For this comparison suppose
comparison. These two cases are different and must ibat each laboratory has measured the same artefact,
interpreted differently. This paper considers a metho@nd the measurements result in two means and two
applicable to the general situation in which eachuncertainty budgets. Each budget details the combined
laboratory does not alter its reference values after thetandard uncertainty, the effective degrees of freedom
comparison. The case in which one laboratory adjustgnd sufficient information so that any important
its reference value by the difference between its result§ovariant items common to each uncertainty budget
and another laboratory’s results can be treated as @n be identified. There should also be details of any
particular instance of the general method. probability distributions that are not assumed to be
Our goal is to reach the broadest clientele, fornormal. _
whom it is most appropriate to use a confidence interval ~ Each laboratory’s parameters are used to define
describing the agreement of a pair of measuremerft continuous probablll'gy dlstrlbutlon_ b_est'descrllblng
results. We propose the following principles for thethe measurement. Typically each distribution will be

interpretation of comparison results. The interpretatiof’o'mal, centred on the meam,;, with the combined
should: standard uncertaintyy;, characterizing the width of the

distribution and having effective degrees of freedam
« quantify the level of agreement; Non-normal distributions may be treated as discussed
Br% Appendix A, if they are adequately described as
commended in th&uide.Covariances are also treated
in Appendix A where the equations are derived more
* be able to treat each measurement result indepemigorously and include covariance components. The
dently: each having its own distribution; effect of degrees of freedom is described separately in

be able to treat effective degrees of freedom, co-
variance terms and non-normal distributions;

¢ describe the best possible agreement warranted
the measurement results;
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Appendix B. Both effects can be determined as well as 6 1
they are characterized within the individual uncertainty - 1
budgets but in the interests of clarity we have omitted ; d°-99§;
these effects from this section. r "]

The continuous probability distributions describing
the measurements afg(«x) for Laboratory 1 and(y)
for Laboratory 2.P;(x) and Py(y) are allowed to be
independent and thus use different argumentandy.
The probability that Laboratory 1 measures the quantity
x betweenz and x + dx is Pi(z)dz and similarly
for Laboratory 2. We are interested in the probability
distribution of the difference of a pair of measurements,
estimated from the measurement pair with 3 as the
variable. If = = x — y then the probability that lies
betweenz and » + dz is P,(z)dz. In the absence of
correlationsP, is a convolution of and /. If P,
and P, are uncorrelated normal distributions, thBnis
also a normal distribution centred at= m; — ms and
with a width characterized by the root-sum-square of
the combined standard uncertainties,= /(uf + u3).
Appendix A re-derives this probability distribution more
rigorously and illustrates it graphically.

The probability distributionf,, is now adequately
characterized and ready for interpretation. As indicated
in the introduction, we wish to determine the confidence
interval within which the means of Laboratory 1
and Laboratory 2 would agree. Such an interpretation
could, for example, give assurance that the probability
that m; = my within £dg is 95%. The confidence .
interval is determined by integrating the probability O A :
distribution symmetrically from 0 totdc until the 0 1 2 3
desired probability,C, is reached. It is important to . .
note that the integration is not centred on the peak Normalized difference of means, |m; —mi|/ up
of the distribution so the confidence intervalg, is
dependent on both the difference between the mearBsgure 1. Quantified equivalence for 68 %, 95 % and 99.5 %
and the combined standard uncertainties (see Figuresctnfidence. A measurement pair with meams and m,;
and 2). and with a combined standard uncertainy= (u2 + u2)"/*

For the usual type of comparison, the degreegives the confidence interval-dc, +dc). The variation of
of freedom, v; and ., will be large. In this case 9c/up With normalized difference|m, —m, | /u, is plotted

. . . for the three confidence levels.
the original estimates about the detailed shape&’of

and > will be unchanged by considerations of thejs shown in Figure 1, for three confidence levels:
sampling limitations. If, as is generally the cadd,  ggos, 95% and 99.5%. The confidence interval
and P» were assumed to be normal distributions thersiarts at the expected values near one sigma, two

they can still be represented by the same normaligma, and three sigma, and approaches asymptotes
distributions. Consideration of the effects of smalleryt | my —my | +0.468w,, |my—my | +1.645u,, and

degrees of freedom is given in Appendix B. For normaly,,,, _ ;| + 2.576 u,,.

Normalized half-width of confidence interval, dc/u,

distributi_ons, at a partiqular degrec_e of confi_der@e We believe that the 95% confidence level is
the confidence-interval isdc, and is determined by appropriate for most clients’ needs and for that
solving the equation confidence we have fitted a function which is simple to
+dc calculate and is accurate to better than 1 %lo§s:
C= / P,(z)dz =

J_de doos = |e — iy |+

(1/2) (exf {[de — (| ma — my | )]/ (upV2) 1+ {1.645 + 0.3295%

erf {[de + (|m2 —mi DI/ (w,v2)}). (1) exp[—4.05 (| mz —my | )/up]} wp. )

The variation of the confidence intervalg, with  Equation (2) allows the confidence interval to be
normalized difference of the meangm, — m1 | /u,,  simply determined with a hand calculator or spreadsheet
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Figure 2. Probability densityP (z, y) for a pair of
measurements andy, with meansm,; andm.. P (z, y) is
the complete description of the joint probability. Following
the Guide P (x, y) may be estimated from the two means,
the standard uncertainties and their correlation coefficient.
The confidence level for quantified equivalence within a
band+d. is obtained by integration of the probability
density in this band, centred an= 3. Also shown are

the projections ofP (x, y) onto the probability densities

for measurements by the first laboratdfy (=), and by

the second laborator®. (y); and for the measurement
differenceP; (u) (scaled to fit this diagram).

program. Figure 1 or (2) allow the confidence interval’

to be determined simply with sufficient accuracy for
any practical comparison.

As an illustration, it may be useful to consider the
method as it applies to two extreme situations.

(@ If m; = my then the confidence interval is
determined by integrating a normal distribution,
which has a width characterized by, =

(u? +u3), symmetrically about the peak of the

hypothesis tests [4-6]) is not suitable as the single
parameter for quantifying equivalence. The normalized
error can be used with a criterion for equivalence, but
still requiresu,, to interpret the equivalence in units of
the measurand. For doing this, a simple “rule of thumb”
has been proposed [7]. It approximates two limiting
cases:|mg —my | Ju, < 1 and | g —my | Ju, > 1.

A “degree of equivalence” is assigned the valie,

for comparisons which haven, —m; | /u, < 1, and

is assigned the valug ms, — m;| for comparisons
which have | ms — m1 | /u, > 1. Our analysis shows
that this rule of thumb estimates the 95% confidence
interval correctly for the two asymptotic cases, but also
can significantly underestimate it. The worst case is at
| ma —my | = 2u, where it is 0.54 of the true value.
In return for the small computational burden of (2),
[or (B2) to account for finite degrees of freedom], our
method also offers the advantages of:

rigour for making explicit statements to clients about
demonstrated confidence for equivalence;

universality for describing all measurement compar-
isons for which the uncertainties in both measure-
ments are adequately described in accordance with
the Guide and

efficiency in promptly and usefully interpreting all
results, even those which fail null-hypothesis tests.

2.1 Application — interpretation of international
comparisons by pair analysis

International comparisons are regularly used to assess
and monitor measurement equivalence in different
countries. This is of importance in trade, manufacturing

distribution. As one would expect, the confidenceand other sectors relying on high accuracy in any
interval, dc, is given by the coverage factor times measured parameter. National standards laboratories
the root-sum-square of the combined uncertaintiesare usually involved at the highest levels of
measurement accuracy and international comparisons,
typically organized by the Bureau International des
Poids et Mesures through the appropriate consultative
committee, are performed for important quantities to
demonstrate that such measurements are in agreement.
The national laboratories have developed different
There is one caution concerning the use of anyevels of capabilities to service the needs of their
confidence intervalthe confidence interval must not be countries and as a consequence comparison results often
treated as if it were a standard uncertaints shown vary widely in their uncertainty claims and occasionally

in Figure 1, the scaling ofi~ from one confidence in their mean values. The interpretation of international
level to another depends og,, on |m,; —m:| and comparisons using this confidence-interval method has
on both the initial and final confidence levels. It cannotthe following advantages.

simply be scaled with a multiplicative factor. For clients
requiring an understandable assurance of equivalence
most would be satisfied with the choice 6f= 0.95,

this being the commonest confidence level used in the

(b) If |ma —m1]| > u, then the expected difference
of the means isn, —m; and is independent of

the confidence level that is sought. Thdg —

| ma —my | if the difference between the means is

very large, again as one would normally expect.

The method provides a rigorous confidence interval
' describing the agreement of the means between
every pair of participants.

literature and promoted by th@&uide

Figure 1 also illustrates that the normalized
difference of the meang:mz—m, | /u, (or “normalized
error”, which is used as a figure of merit for null-
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It can use simple uncertainty budgets, and yet
can accommodate fully detailed uncertainty budgets
and rigorously treat correlations, finite degrees of
freedom and non-normal distributions.
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» It can be adapted to different levels of confidenceN (N —1)/2 to N (N + 1)/2. For some applications
as required. a lesser number of measurement pairs might suffice.
The N comparisons of each laboratory with the mean

» It allows equivalence between two parties to bevalue, taken as a set, may superficially appear inviting;

ai?p;g'ted as closely as the measurement pair resul{;ut in. s'ingle-parameter fqrm they are not capable of
| qguantifying the best possible agreement warranted by
« It does not impose on any pair an inflated agreemerthe measurements of any two participating laboratories,
interval that includes other participants’ larger nor can they treat significant covariances correctly.
uncertainties.

2.2 Application — assessment of two laboratories

¢ It applies equally well to laboratories with very =< .
indirectly through a third common laboratory

similar means and uncertainties, and to laboratorie
with very different means or uncertainty claims.
This method may be applied to quantifying the
equivalence of two Laboratories (1 and 2) indirectly, by
each performing comparisons with a common third or
“vertex” Laboratory (3). Thus direct comparisons are
» The procedure is simple, very easily calculated andiot required for quantifying equivalence betweéh
applicable to any type of comparison. laboratories in a study, andV — 1) bilateral compar-
. . isons can generat® (N — 1)/2 bilateral equivalence
* The procedure does not require committee evalsiaiements. Furthermore, if a new laboratory wishes at
uation, but instead directly uses the information, |ater date to demonstrate equivalence with thse
as provided by the metrologists involved, i.e. thejaporatories, theV new equivalence statements may be
participants in the comparison. derived from just one new measurement pair.

« The procedure provides a quantified equivalence The mean valuemn; of the vertex laboratory
even for comparisons which would fail to give any Will have uncertainty us. In the comparison with
formal agreement with interpretations [4-6] basedl@boratories 1 and 2, using a pair uncertainty of

on the null hypothesis. v (u? 4+ u3 + 243) will usually overestimate the uncer-
tainty. The uncertainty contribution of Laboratory 3

* The procedure easily re-evaluates comparisons ghay be better than this due to its stability. Its stability,
a Iater date for audItS, for new staff and for neWrepreSented by a smaller standard uncertam’ is
agreements. estimated from its uncertainty budget by removing (in

« The procedure can be easily adapted to include othéfuadrature) all uncertainty terms known to be fully
parties at a later date (see below). This will be Verycorrelated between the first and second measurements

important as comparisons become larger and includ Laboratory 3, but retaining the travel uncertainty,
different regional metrology groups. a!l rgndqmly sa}mplled uncertainties and any re-sampled
distribution which is not known to be fully correlated.

The appropriate consultative committee may choose tthversely correlated terms will be rare, but must not be
adopt some kind of interlaboratory mean value withremoved since they will contributéu? to the variance
which to reference all the comparison results. Thisof the difference. Partially correlated uncertainty terms
value may be defined as the mean of the comparisogan be treated by separating them into correlated and
results, either as a weighted or as an unweighted meagncorrelated parts.
Constraints to avoid excessive reliance on the results Let P, (x) ® P, (y) be the distribution obtained
of any one laboratory may also be used. This typeby the convolution ofP; (z) and P; (y). The stability
of reference value can have a real significance as af a measurement in Laboratory 3 is described by the
consensus value of the SI unit, or instead it might bedistribution P55 (z) with a standard uncertainty of;s.
regarded as an arbitrary, interim value when consensughe difference in two measurements in Laboratory
has not been reached. This value would normally havé will be described by the distributioss (z) ®
its uncertainty and its effective degrees of freedomPss ('), after all known deterministic biases have been
specified. Unfortunately, it will also have correlationsremoved. It will have a standard uncertairfty2) uss.
with each of the constituent measurement results. IThen the distribution expressing the comparison of
a typical multilaboratory comparison the consultativeLaboratories 1 and 2 through Laboratory 3 is given by
committee would usually have to consider all of these(P; () ® Pss (2)) ® (P2 (y) ® P35 (2'). The confidence
parameters. Our measurement pair analysis can easilyterval for the equivalence of Laboratories 1 and 2 is
determine a confidence interval in this situation byobtained by symmetrical integration of this distribution
considering each laboratory in turn, compared withaboutx = y. For normal distributions, the combined
the reference value as the other “laboratory”. Onestandard uncertainty for comparisons through a vertex
consequence of adopting a reference value is ttaboratory isu, = \/(uf + u2 + 2u3g. To calculate a
increase the total number of measurement pairs fromonfidence interval fromu, and |m, — m4| (really

e It does not require knowledge of the “key
comparison reference value” or details of how this
value was derived.
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[ (g —mb) — (g —r3) | and assumingng = ) It is important to consider the implications of
we may use Figure 1, or (1), or (2). interpreting the confidence interval of a bilateral
Indirect comparison allows a group of laboratoriescomparison with contentious results. When contentious
to quantify equivalence efficiently. Indirect comparisonresults are reported from two metrologists — each of
gives a somewhat larged~ than might have been whom has claimed to have given his best estimate of
obtained in a direct comparison. If the vertex laboratorythe mean, standard uncertainty and degrees of freedom
has stability equal to or better than the entire uncertainty a third party can still properly construk: as the joint
budget of the other two laboratories, then the indirecbest estimate of the confidence interval for agreement.
de can be up toy/2 worse than for the direct method. Since each metrologist has claimed that his results are
This will be the case if travel uncertainty dominates.“correct”, or at least his best estimate, then the only
If the stability of the vertex laboratory (including additional assumption that the first metrologist must
travel) is half the overall uncertainty of the other two make to quantify the equivalence is that the second
laboratories, then the degradation is no worse thametrologist is reporting correctly his mean, standard
12%, or 5% if it is predominantly travel uncertainty. uncertainty and degrees of freedom.
Normally the vertex laboratory and the artefact will be In comparisons, it is usually possible to employ
chosen to minimize this degradation. A somewhat largeunknown artefacts to ensure that the mean is reported
dc may be considered a small compromise to reduc&ithout bias, and so on average the difference of
the comparison measurement workload by a factor othe means will be properly accounted for within
betweenV/2 and N (which is often more than 10).  the confidence interval. There is less assurance with
respect to standard uncertainties, where unreconciled
disagreements are not unknown. For describing
equivalence between the two laboratories, the greatest
o ) ) concern of the first metrologist is probably that the
It is interesting to note that this one-parametelsecond metrologist might underestimate or under-
descnptlon. of.equwalence will not have the characterreport his standard uncertainty. Interestingly, in the
of a metric in a vector space, and so could Nolcase where two laboratories have roughly equal
rigorously support an ordering of comparisons fromeapapiiities, the confidence interval is relatively robust
“best” to “worst”. It only describes equivalence and g possible under-reporting of the standard uncertainty
thus can convey no information concerning whethery,y one Jaboratory. If one laboratory underestimates
for example, it is “better” to arrive at a given level of jts yncertainties, then on averagk: should reflect
equivalence Wit_h a small_diﬁerence in_the means anghis fact by having included the variation in the
a large uncertainty, or with a larger difference in thegitference in the means, as well as the other laboratory’s
means and a smaller uncertainty. This type of questiofeported uncertainty. For two otherwise identical
does not impinge on equivalence, and remains a subjegbmparison results the effect of underestimation of
for investigation by metrologists, who would probably gne of the uncertainties would result in, at most, a
be happier with the former case and regard the lattefoqyction of 1/v/2 (about 30%) of the confidence
case as implying that there is something in at leasjyterval. We believe that a 30% relative precision
one uncertainty budget which is not being evaluatedg usually sufficient for the practical purposes of
properly. _ _equivalence agreements. This robust characteristic can
Because the effective degrees of freedom ig)e 5 significant consideration in minimizing concerns

never _infﬁnite, the consequence of ignoring the _eﬁechbout the degree of equivalence demonstrated by a
of a limited number of degrees of freedom is tocomparison.

underestimate the size of the combined uncertainty
used to calculate the confidence interval. A rough
estimate of that underestimation is obtained from thé"
ratio of the integrals of the Students distribution
to.os (V) /toos (o) (see Table G.2 of th&uidg. The For any measurement comparison between two
correct treatment is presented in Appendix B. laboratories, a single parameter can be determined that
Because almost all correlations have a positivequantifies their bilateral equivalence in a form suitable
value of correlation coefficient and represent a relativelffor equivalence agreements. The confidence interval
small fraction of the total uncertainty, the typical can rigorously incorporate both the standard uncertainty
consequence of ignoring the effect of correlations isand the difference in the means revealed by comparison
to obtain a slightly larger confidence interv®: than  measurements, as well as the effects of correlations and
would have been obtained if the correlations wereof limited degrees of freedom. This single-parameter
properly assessed. For fully correlated individual termsinterpretation is also applicable to comparisons utilizing
the correlation can easily be handled in the distributioran interlaboratory mean.
of the difference by removing fully correlated The measurement pair analysis naturally leads to an
uncertainty terms from the two uncertainty budgetsinterpretation for multilaboratory comparisons without
A detailed treatment is presented in Appendix A. the need for an interlaboratory mean value. Each

3. Discussion

Conclusions
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member of a group ofN participating laboratories exp [—(y — mns)?/242]/\/(27) us, Where m, is the
determinesN — 1 individually quantified equivalence mean of the measurements mpfand«, is the standard
statements. Each of these bilateral statements is robushcertainty iny. It is easy to see that the standard
in the sense that it is unaffected by the uncertaintyuncertainties:; andw. are different in general, so that
of a third party. Each of thév — 1 statements is in a P; and P, must be different distributions. It is more
form suitable for approval as an equivalence agreemensubtle to appreciate that for quantifying equivalence,
By working through a vertex laboratory, a participatingone should also initially allowr; to be different from
laboratory may obtainV — 1 equivalence statements ms, and thatP; and P, must be different distributions

after making only one measurement. in this respect. The distributions are regarded as distinct
For the pilot laboratory makingy or perhaps fewer in at least these two respects.
measurements, the preparation of thée(N —1)/2 For all possible pairs of measurements,y),

confidence intervals can be wholly automated and yethe two-measurement generalization of tliidés
incorporate the consequences of known interlaboratorgrobability density is a continuous function of both
correlation and the effects of limited degrees ofx and y, P (x, y). The probability of obtaining a
freedom. measurement betweenand s + d« is Py (z) dz, and
the probability of obtaining a measurement betwgen
Acknowledgements. It is a pleasure to thank our andy + dy is P> (y)dy. In the absence of correlations
colleagues at the National Research Council obetweenz and y, for obtaining both a measurement
Canada for their encouragement and for many helpfulrom Laboratory 1 betweenz: and = + dx and
discussions on equivalence quantification. In particulan measurement from Laboratory 2 betwegnand
we wish to thank G. Chapman, J. Decker, K. Hill, D. y + dy, the probability is the product of the probability
Inglis and A. Steele. Opinions in this paper are those of?; (x) dx and the probabilityP; (y) dy. Thus, in the
the authors and should not be assumed to imply officishbsence of correlations; (z, y) = P; (x) P2 (y). The

policy of the NRC. relationship between?; (x), P> (y) and P (x, y) is
illustrated in Figure 2.P; (x) is just the integral of
Appendix A P (z, y) over all ways of generating the same(i.e.

the integral over aly); and similarly P, (y) is just the
integral of P (x, y) over all ways of generating the
samey (i.e. the integral over alk).
Even in the presence of correlations; (x) =

Pz, y)dy and P, = | P(z, y)dz. The effect
In this Appendix we derive (1) in sufficient detail to ({f c(0r7reylz';1tign betgvéggn tge I("né;/s?urements of two
make its rigour accessible to anyone familiar with anqaratories may be evaluated by simply examining
elementary probability and calculus. We believe thabairs of uncertainty components,; and us;, one

this level of detail is warranted by the wide variety of 1\ each of the two uncertainty budgets. For each

technical backgrounds represented by clients who argymnanent pair the effect of correlation is considered

serve_d_ by equivalence statements, and .their poss_ib% it affectsP (, ), in particular its effect on,. Each

scepticism of results which they cannot simply find in pair will have a correlation coefficient; and

statistics textbooks. N
The statistical basis underlying th&uide is . 9 9

that for measurement of a phys)?cagll variable the Up = \/[E“ (i o+ udy = 273 waiuzg) ] (AL)

sources of measurement uncertainty are to be evaluated Most pairs will be considered to be uncorrelated,

by the measurer and quantitatively represented bynd for these;; = 0. In the context of interlaboratory

a continuous probability density functionP; (x).  comparisons, the use of statistical methods to establish

The subscript 1 is used to denote measurementsorrelation coefficients will usually be impractical. For

at Laboratory 1. Usually the appropriate functionalsome pairs, however, simple inspection of the two

Derivation of the confidence interval
with covariances included

form is a normal or Gaussian distributioR, (x) =  uncertainty budgets will reveal a good estimate of the
exp [—(@ —my)?/242]/\/(27) uy, Wherem, is the correlation coefficient.

mean of the measurements ofand whereu, is the For example, if both uncertainty budgets have
standard uncertainty in. included the same component representing the same

For comparisons, we also consider measurementsavel uncertainty of the artefact then the effect of this
made by Laboratory 2 on the same artefact. Theseomponent pair has been “double counted” with respect
measurements are allowed to be independerf®,¢f:)  to w,. This effect of correlation could be treated by
and measure what is construed to be the sameemoving the component from one budget or by means
physical quantity, but referred to by the variableof the correlation coefficient of this pair of components
y and subscript 2. The measurement uncertainty;; = 1/v/2.
is evaluated and is represented by the continuous Consider another example involving a comparison
probability density function?; (y). Usually a normal of two optical frequency standards using a stable
distribution is appropriate here, tooF,(y) =  travelling laser. Both uncertainty budgets could
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include the same uncertainty component owing to theneasurements made at the two laboratories should give
uncertainty of the absolute Sl frequency of the travellingthe same result, and we believe that they would be
laser. However, the uncertainty of the absolute Sbest served by a simple, symmetric interval about
frequency of the travelling laser has no effect onthis preconception. Thus we are led to integrating
the uncertainty of the difference. For this pair of symmetrically about( = 0, to find the confidence
componentsr;; = 0. This could also be treated level C of a result being in the interva] = —d¢ to
by considering modified uncertainty budgets for this¢ = +d. For normal distributions the confidence level
measurement pair in which this component is removeds expressible in terms of the cumulative distribution
from the budgets of both laboratories.

It is often convenient to characterize the correlation N o [ 2
coefficients,r;;, and then to use a globalwith «; and h(z) =1//(2m) / exp (—X7/2)dX

ug in the calculation ofu,: where

UI,:\/[(U%"FU%—ZTUlUZ)]a h(.l?) :1/2€I‘f(.17/\/§):

with

/2
a2 [ ey,
= [, (rij v U2j)]/\/[(2i ui;) (85 u3;)] (A2) 70

We now develop a means of incorporating +do
correlations intoP (x, y). We wish to consider the C:/ p (¢)d¢ =
probability density of P(x, y) projected onto the —de
variable (x — ), by changing variables t§ = « + y
and ¢ i x —) y, and integrating overf. In the h((ma = ma + do)/up] =
absence of correlations betweenand y, this gives h(my —ma —de)/up] =
a probability density which is the convolution & (x)
and P, (y), centred at( = (m; —m,) rather than at 1/2 (exf {[de — (| mz — mu )]/ (upV2) 1+
¢ = 0.* For normal distributions with correlations
betweensz and y (with global correlation coefficient ext {[de: + (| mz = ma )]/ (u,v2)})

r), the probability distribution in¢ is P,({) = (A3)
exp {[—¢ — (m1 — mg)]2/(2 ui)}/[\/(%r) u,], Where

u, = /(u? + u3 — 27uy uz). Note that the distribution - _

is explicitly centred atl = (m; —my) rather than at Wwhich can be solved iteratively fofc for any particular

¢ = 0. The results of this integration along lines of value of C.

constant(z — y) are illustrated in Figure 1 a®; (z), More general forms ofP (x, y) can be simply
where the variable: is (I_ y)/V2 is used so that handled by a two-dimensional integration, integrating
it has the same scale in Figure 2 as the diagongVer the region fromy = z —d toy = x4 d, as shown
|n the two-dimensional plot ofP (x, y) — note that in Figure 2. Changing variables fromy to { =« +y

P3(z)dz = P,(¢)d(. and¢ = x —y, with Jacobian-1/2, the mtegral in this

The confidence level associated with a subsequeriggion over the probability density (v, y) is
similar measurement paifz,y) having its value of oo _Hd
(z —y) in arange off from (; to (s is just the integral / (, y) dy dz =
of the probability density”, (¢) d¢ from ¢; to (e. oo Jy=

The commonest type of confidence interval is £=too c——d
not appropriate: one symmetrically situated about the / /

¢

centroid of the known bias, estimatedras — m». This
type is only appropriate when the measured value of

mi — ms is to be subtracted out in any subsequent 1 L&+ ¢)/2 (£ ¢)/2(=1/2)dCdE =
comparison(that is, wheny is to be compared with (=+d pé=+co
x — (mq —my)). This procedure is not appropriate / /

¢=

when the measurements are hypothesized to be centred
elsewhere, as is the case for many clients dealing with P [(£+ ()/2, (£ —)/2](1/2)d¢ (A4)
equivalence statements: their preconception is that the

This is the general form which can be used with

* This distinction is crucial, since although the best estimate of arbitrary probability density functions, and can include
( is'm1 —my, it is notthe estimate normally contemplated . !
in equivalence statements, which retain the a priori estimate  th€ €effects of correlations between and y that go

that¢ = 0. beyond a simple convolution.
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Confidence-interval interpretation of a measurement pair for quantifying a comparison

Appendix B uy = /(%;u},), and the degrees of freedom
Ve,1 = (Biui /vi1)/(Biuf1)? and veg» =
Degrees of freedom (Siulo/vi2)/(Siud,)®  The overall degrees

o . of freedom for the comparison iSvex, =
For most applications in metrolqu the degrees of U%Jru%)z/(ug/yeﬂ | + u}/veg ), and the distribution
freedom has been a parameter which we have been _até? the differences will be approximated by a Student's
to neglect. However, any method purporting to quantify;_qistribution with Ve, p degrees of freedom. It is
the level of agreement between national measuremept necessary to truncate the degrees of freedom to
laboratories needs to be capable of rigorously handling, integer. The probability distribution?,, is again
the degrees of freedom. Fortunately, tBaideis clear given by the convolution ofP, and p; which is

enough to need only careful interpretation to Qvaluat%\pproximately a Student's-distribution with mean
the confidence interval for agreement including the ms — my), standard deviation, = /(w2 + «2) and
] P 1 2

effect of degrees of freedom, and we present OUbractive degrees of freedom.s ,. As an additional

inten_lc_Jrr]etatio_nd here. ds th ‘d fnote, we believe that an estimate of the degrees of
e Guide recommends the use of degrees Ofgaoqom of the comparison, assembled in this way,
freedom, v, to describe a limited knowledge of the

dard . f f | should be tested against the metrologists’ intuitive
standard uncertainty of a set of measurements. Its US€ i3y, eciation of the uncertainty in the uncertainty:

explicitly recommended for any uncertainty component N =2

evaluated by repeated measurement (simply the numbef? ~ 0-5 (Aup/up) - In general we would also
find g tp ¢ . tr?y b %vocate taking the smaller of these two estimates
.Od'n erijen ter]c].ttnéeasuremetns manus € num te'rt f the degrees of freedom of the comparison. The
Independent fited parame ers). For an uncertain ffective degrees of freedom for the measurement pair
component evaluated in other ways, the degrees given by, which we simply refer to as

freedom may be estimated from the uncertaidfy. With théff’gbove based closely on theuide

in the unc?][tamtyu: v 2'5|(|Au/u) - The effective 6 o1y new element which we have to introduce
degrees of freedom.g;, of all uncertainty components s e asymmetric integration of the Student's

is evaluated by the Welch-Satterthwaite formula: t-distribution : its probability density function i (¢) =

N2 s I+ 1)/2)/(+ /)1 (v)2) (), and
vt = (%) "/ (8w /vi).- its cumulative distribution ig (7) = [*_ f () d¢ for
a confidence level”, forming a confidence interval
(—=dc, +dc) centred on the assumption that the means
are equal. Thus we solve fdg: in the integral equation
tde
P, (t)dt = g [(my —ma + de) /up]—

The probability density used to describe a
measurement is a Studentisdistribution with v.g
degrees of freedom.

The Guiderefers the reader to standard textbooks C— /
on statistics concerning the Student’slistribution for o
v degrees of freedom. This distribution applies to any
variable which is the ratio of two random variables [8], g [(my—ma—dc)/up]. (B1)
with the numerator drawn from a normal distribution,
and the denominator drawn from an independent The confidence intervaldo.o;, is obtained by
random variable which is the square root of a randonfymmetric integration off, about O, until the 0.95
variable distributed ag? with » degrees of freedom. confidence level is achieved. Table 1 and Figure 3
For a samp|e ol +1 independent measurements thati”UStrate the exact solutions of (Bl) for a confidence
are normally distributed, the ratio of the deviation oflevel of 95%, and show the dependencedgpf; with
the sample mean from the “true” mean to the samplé: |m2 —mi|, andv. _ _
variance divided by,/( + 1) may be shown to have A simple, but slightly restricted, numerical
a Student'st-distribution, and it is in this pure Type A @pproximation ofdo.o; including the effective degrees
form that the Student'g-distribution is most often Of freedomy is given by
employed in metrology. If the variance is estimated do.os ~|ma —my | +a{1.645 4 0.3295x%
in any other independent way, by pooling results or
through Type B techniques, it is also possible to show exp [=4.05 ([ m2 —ma | /up)]} up,
that the Student'si-distribution should apply. With
Type B methods the major concern usually will be overvhere
the adequacy of thg? distribution as a description of a=0.283+0.717b+
the variation of the uncertainty in the uncertainty. 3 9

For comparing measurement pairs, the uncertain- 0.0425% exp [-0.399 (| mz — my | /)]

ties are combined as, = +/(u? + u3), deliberately q
omitting fully correlated (r; = +1) uncertainty 2"
b= 1.960 — 3.162/v + 5.46 /(v — 0.607).

terms in assembling u; = ,/(Ziuil) and

—d¢

(B2)
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Table 1. Quantified equivalence for 95 % confidence, including degrees of freedom. A measurement pair with means
m, andms; with a combined standard uncertainty; and effective degrees of freedom, gives the confidence

interval, (—dc, +dc). The values ofic /u, are tabulated with respect to the normalized differepeg — my; | /u,

and the effective degrees of freedon¥ 1, 2, 3, 4, 5, 6, 8, 10, 14, 25 ans.

[my —ma | Jup v=o v=25 v=14 yp=10 v=28 v==~6 v=>5 v=4 v=3 v=2 v=1
0.0 1.96 2.06 2.14 2.23 2.31 2.45 2.57 2.78 3.18 4.30 12.71
0.2 2.00 2.10 2.18 2.26 2.34 2.47 2.60 2.80 3.20 4.31 12.71
0.5 2.18 2.27 2.34 2.41 2.48 2.61 2.72 2.92 3.30 4.38 12.73
1.0 2.65 2.71 2.77 2.83 2.89 3.00 3.09 3.26 3.60 4.59 12.78
15 3.15 3.21 3.26 3.32 3.37 3.46 3.55 3.69 3.99 4.91 12.88
2.0 3.65 3.71 3.76 3.81 3.86 3.95 4.03 4.16 4.44 5.28 13.01
25 4.15 421 4.26 431 4.36 4.45 4.52 4.65 491 5.70 13.18
3.0 4.65 471 4.76 4.81 4.86 4.94 5.02 5.14 5.39 6.14 13.38
35 5.15 5.21 5.26 5.31 5.36 5.44 5.52 5.64 5.88 6.60 13.60
4.0 5.65 5.71 5.76 5.81 5.86 5.94 6.02 6.14 6.37 7.07 13.85
5.0 6.65 6.71 6.76 6.81 6.86 6.94 7.02 7.13 7.37 8.02 14.43
7.5 9.15 9.21 9.26 9.31 9.36 9.44 9.52 9.63 9.86 10.47 16.17
10.0 11.64 11.71 11.76 11.81 11.86 11.94 12.02 12.13 12.36 12.95 18.18
The termb is an approximation of the ratio of the
breadths of the 95% confidence interval from the

8 vﬁ Student’s ¢t-distributions with » and infinite degrees

i of freedom. This numerical approximation @ g5
is accurate to within 6% forr > 2 in Table 1,

7 and should be sufficient for all practical purposes.
~ i It has the added benefit of interpolating conveniently
3 . for non-integer degrees of freedom. Equation (B2) is
? 6 simple enough be evaluated with a hand calculator
© L dogs 1 or spreadsheet program; it requires no integration or
qE) I 1 iterative procedures; and it retains the same form as (2).
c
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