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Abstract 
 
In the field of infrared (IR) temperature measurement, accuracy of temperature measurements has not been as good as it is 
in contact temperature measurement. This is true for measurements made with thermal imagers as well as measurements 
made with handheld IR thermometers. In fact, many thermographers are not as interested in the measured temperature of an 
object as they are in the differences in temperature in the imager’s field of view. However for various reasons such as 
regulation and accreditation, knowledge of the accuracy of measurements may be necessary. 
 
To determine the accuracy of measurements, it is necessary to do a calibration on the measuring instrument. Just as 
important is creating an uncertainty budget for that instrument. The calibration gives the instrument an agreement to an 
established standard. The uncertainty budget tells the user how close to that agreement the user can expect his instrument to 
be on a repeated basis. 
 
This paper discusses the elements needed for an IR thermometry uncertainty budget, especially as it relates to thermal 
imagers. It introduces a measurement equation and discusses how to apply that equation to measurements made with 
imagers. It discusses how to structure an uncertainty budget so it can be understood by other thermographers and assessors. 
 

Introduction 
 
Although many applications using IR thermography or IR thermometry do not require knowledge of temperature 
measurement accuracy, there are some applications that do. For applications that do, a standardized method should be used 
to determine accuracy. An accepted method of determining the accuracy of a measurement is to prepare an uncertainty 
budget. This paper is intended as an overview of the information necessary to put together an uncertainty budget that will be 
acceptable to describe the accuracy of IR measurements. 
 

1. Background 
 
The information in this paper is based in a large part on the experience of constructing uncertainty budgets for IR 
thermometry at Fluke Corporation Hart Scientific Division.  
 
The purpose of doing an uncertainty budget for any type of measurement is to determine the accuracy of that measurement. 
A properly calculated uncertainty budget reveals the accuracy of measurements and gives a means of communicating this 
understanding. 
 
In IR thermometry, accuracy is often not a large concern to the users of this technology. This is the case with the users of IR 
thermometers. This is the case with the users of thermal imagers as well. However, there are occasions where knowledge of 
these instruments' accuracy is needed. There are a number of reasons to perform an uncertainty budget. Some industries 
require calibration on all pieces of measurement equipment. Sometimes that requirement can be of a legal nature. Some may 
be just to determine the accuracy of a measurement. 
 
To begin this discussion, there are a few concepts that should be understood. 
 
For temperature measurements, accuracy is the “closeness of agreement between the result of a temperature measurement 
and a true value of the temperature” [ASTM E 344-02]. In the case of temperatures up to about 960C, these standards (or 
true values) are defined by a set of fixed points (usually pure metals or pure water). In the US, these standards can be 
calibrated by NIST. Points between these fixed points are often defined by the ITS-90 temperature scale. In fact, the ITS-90 
is considered as a standard temperature scale for calibration of PRTs [Nicholas & White]. 
 
Not to be confused with accuracy is repeatability. Repeatability is the ability to get the same results for a measurement 
during repeated measurements. In temperature measurement, it is “closeness of agreement between the results of successive 
measurements of the same temperature carried out under the same conditions of measurement” [ASTM E 344-02]. This is 
not the same as accuracy. A set of measurements may have a repeatability of 0.2°C. However, if all of these measurements 
are 1.0°C from what standards traceable to national laboratories indicate they should be, then they are actually less accurate 
than they are repeatable. 
 
Traceability fixes an instrument’s measurement to a standard [Nicholas & White]. If its calibration is traceable, it will have 



been compared or calibrated to a standard. This standard may have been calibrated at a national laboratory, or it may be 
traceable to a national lab.  
 
The uncertainty budget guideline that is followed in this paper is the Guide to U. S. Guide to the Expression of Uncertainty 
in Measurement commonly referred to as the GUM. It is recommended that anybody calculating uncertainty budgets have 
this guideline and follow it. 
 

2. IR Uncertainty Budget Elements 
 
In order to properly define the accuracy of a calibration or a measurement, an uncertainty budget should be performed. To 
do a proper uncertainty budget, any item that would influence a measurement should be considered [GUM]. 
 
A basic list of uncertainties for IR temperature measurement is listed in Table 1. These uncertainties can be used for 
uncertainty budgets for IR thermometer and imager calibration as well as IR thermometer and imager use. Some of these 
uncertainties do not apply in all cases.  
 
This list does not include aperture related uncertainties which will not be discussed in this paper. Apertures are often used in 
high end IR thermometry to reduce the effects of scatter on measurements. 
 
Related Usage Uncertainty Brief Description 

Calibrator Calibration Uncertainty Uncertainty of the Calibrator’s Calibration 

Calibrator Stability (long term) Long term drift of the IR calibrator during its calibration interval 

Calibrator, Surface Uniformity Temperature uncertainty due to uniformity within the area being 
measured 

Calibrator, Surface Noise Based on the surface’s temperature stability 

Calibrator Display Resolution Based on the display resolution of the calibrator 

IR Thermometer Readout Resolution Based on the display resolution of the IR thermometer 

IR Thermometer, IR 
Imager 

Ambient Temperature The effects of ambient temperature on the IR thermometer’s 
measurement 

IR Thermometer, IR 
Imager 

Noise Based on the IR thermometer’s temperature stability 

IR Thermometer, IR 
Imager 

Atmospheric Losses Based on the difference between the IR thermometer’s 
atmospheric losses between it’s calibration and use 

IR Thermometer, IR 
Imager 

Angular Displacement Based on the change in emissivity of an object when a 
measurement is not being taken at a normal angle from that object 

IR Thermometer, IR 
Imager 

Background Temperature The effects of background temperature on the IR thermometer’s 
measurement 

IR Thermometer, IR 
Imager 

Spectral Variation The effects of the IR thermometer not measuring within its 
specified bandwidth 

IR Imager Display Uniformity The effect of measurement variation in the area of interest on the 
imager’s display 

Table 1: List of IR Thermometry Related Uncertainties 
 

3. IR Uncertainty Budget Structure 
 
Having the correct uncertainty budget structure allows communication of uncertainties to people outside one’s organization. 
The following section gives basic information on necessary elements to an uncertainty budget. 
 

3.1. Type 'A' Uncertainties and Type 'B' Uncertainties 
 
Uncertainties are divided into two categories, Type ‘A’ and Type ‘B’.  Type ‘A’ uncertainties are those determined by 
statistical methods. Type ‘B’ uncertainties are those not determined by statistical methods. 



An example of an uncertainty determined using statistical methods is the following. Repeatability needs to be determined 
for an uncertainty budget. A number of measurements is taken from a known temperature source. These measurements are 
compared to each other. The uncertainty for repeatability is based on this comparison.  
 
A couple of examples of uncertainties not determined by statistical methods are the following. One example would be an 
accuracy specification provided by a manufacturer. Another example is an uncertainty determined entirely by modeling 
such as using Planck’s Law to model the effects of uncertainty in emissivity. 
 

3.2. Distributions 
 
The two major distributions we will talk about here are rectangular and normal. There are other distributions listed in the 
GUM. 
 
A rectangular distribution is one where uncertainty is distributed equally with in a set of limits. An example is an IR 
thermometer with an accuracy specification of ±1.0°C at 100°C. The uncertainty would be 1.0°C with a rectangular 
distribution. Standard deviation for a rectangular distribution can be determined by dividing the rectangular distribution by 
the square root of 3 (~1.7). 
 
A normal distribution is often known as a bell curve or a Gaussian distribution. It predicts roughly 68% of measurements 
will fall within one standard deviation, and roughly 95% of measurements will fall within two standard deviations. The 
following is an example of a normal distribution.  20 measurements are taken to determine repeatability. 19 of the 
measurements (95%) fall within ±0.4°C. This means if the samples have a normal distribution, they have two standard 
deviations of 0.4°C.  
 
Standard deviation can easily be determined by the use of a spread sheet program such as MS Excel. In Excel, this is 
accomplished by the STDEV() function. This will give you one standard deviation. To get a number for 2 standard 
deviations, simply multiply this number by 2 (2*STDEV()). 
 
A brief note about the term ‘k’ of coverage factor in uncertainty budgets, a k=1 uncertainty means it has a normal 
distribution and has been stated as 1 standard deviation. Likewise, a k=2 uncertainty means the uncertainty has been stated 
as 2 standard deviations [Nicholas & White]. 
 

3.3. UC budget Explanations 
 
An uncertainty budget should come with an explanation for each uncertainty. This makes understanding the uncertainty 
budget easier for auditors and customers. Table 1 gives some basic uncertainty budget explanations, although, more 
elaboration may be given for an explanation. 
 

4. IR Math 
 
One of the biggest challenges of calculating uncertainties for IR thermometry is dealing with the math. This is due to the 
complex mathematical and physical nature of the IR measurement system. 
 

4.1. Measurement Equation 
 
An uncertainty budget should be based on a measurement equation [GUM]. The way an IR thermometer or imager 
calculates temperature is based on detector signal. This is true whether the instrument under test is being calibrated or being 
used for temperature measurement. A basic measurement equation for IR temperature measurement is shown in Equation 1. 
This is a simplified equation. It should be noted that each of these terms is influenced by the factors shown in Table 1.  For 
example, the signal for any measurement depends on both the background temperature (TBG) and the temperature of the 
object being measured (TSURF). 
 
( ) ( ) ( ) ( )BGSURF TSTSTS εε −+= 1  

Equation 1. Basic Measurement Equation for IR Thermometry 
 

4.2. Planck's Law 
 
Radiation is what an IR thermometer measures. Radiance is modeled using Planck’s Law [DeWitt & Nutter]. Although not 



much explanation will be given on how to mathematically apply this equation in all situations, knowledge of how the 
different elements of Planck’s Law can influence uncertainty is important. For example, the term λ refers to wavelength. 
This indicates that spectral variation or the bandwidth limit variation of the optical system should be considered. 
 
It should be noted that the L (spectral radiance) in Equation 2 is related to and is proportional to the S (signal) in Equation 1. 
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Equation 2. Planck’s Law 
 

4.3. SH Equation 
 
One alternative to using Planck’s Equation that has been suggested is the Sakuma-Hattori Equation [Saunders et al] shown 
in Equation 3. It is problematic for the user of handheld industrial type instruments in that the A, B and C constants are most 
likely not provided for these instruments. 
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Equation 3. Sakuma-Hattori Equation 
 

4.4. IR Math Made Simple 
 
Planck’s Law is rather complicated. If the 8 to 14 μm band is being used for measurements, the equation must be evaluated 
over the instrument’s bandwidth. This is not a trivial task, since the equation turns into an integral that must be solved 
numerically. For many uncertainties not determined by statistical methods, a mathematical calculation must be made. 
Instead of mathematically calculating the effects of uncertainty in items such as emissivity uncertainty, background 
temperature and the effects of scatter, there are sources which provide charts and graphs to simplify these calculations 
[ASTM E 1256-95, Fluke, Mikron]. Two examples of graphs which can be used are shown in Figures 1 and 2. They are 
based on numerical modeling of Planck’s Equation done at Hart Scientific and show the effects of uncertainty in emissivity 
and background temperature. 
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Figure 1. Effect of a 1% Change in Emissivity 
 



Effect of a 1°C Increase in Background Temp on Measured Temp
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Figure 2. Effect of a 1°C Change in Background Temperature 
 

5. IR Uncertainty Budget Calculation 
 
With the knowledge described here, it is possible to calculate an uncertainty budget.   
 
For any independent or uncorrelated uncertainties a sum of squares can be used [GUM]. It any of the factors are correlated, 
they must be calculated by summing the components. An example of a simple uncertainty budget calculation is shown in 
Equation 4. In this example, all uncertainty budget items are uncorrelated, so a sum of squares is used. Note that u1 and u3 
follow a normal distribution, so they are divided by 2 since they are k=2 uncertainties. The term u2 is divided by the square 
root of 3 since it follows a rectangular distribution. 
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Equation 4. Example of Uncertainty Budget Calculation Equation 
 
The sum of squares gives the k=1 or combined standard uncertainty represented by a lowercase ‘uc’. Multiplying this 
number by 2 gives the k=2 uncertainty or the combined expanded uncertainty represented by an uppercase ‘U’ [GUM]. 
 

5.1. Emissivity – How Bad Can It Be 
 
One component that should always get special attention in an IR uncertainty budget is emissivity. In order to make accurate 
temperature measurements, the emissivity of the surface or cavity being measured should have a determined emissivity. 
This is true when using an IR thermometer to make measurements, and it is especially true when calibrating an IR 
instrument. 
 
A relationship between emissivity change and measured temperature change can be mathematically modeled. The results of 
one such exercise is shown in Figure 1. Note that at ambient background temperature, emissivity has no effect. The graph in 
Figure 1 shows the effects of a 1% change in emissivity. It is not a stretch to see how much worse the effect is when there is 
an uncertainty of several percent in emissivity. 
 
Another thing to keep in mind when considering emissivity is that surfaces do not exhibit a constant value for emissivity 
over all wavelengths. In other words, these surfaces are not gray [DeWitt & Nutter]. This becomes a problem when using 
two instruments with different spectral responses. An example of a non-gray surface is shown in Figure 3. This emissive 
spectral response is typical of paints. The graph in Figure 3 was measured by Fourier transform infrared (FTIR) testing 
[Hannsen et al]. 
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Figure 3. Emissivity of a Typical Paint 
 
5.2. IR Thermometer Example Uncertainty Budgets 
 
An example uncertainty budget for an IR thermometer calibration is shown in Table 2.  Due to demonstrational purposes, it 
only considers 1 temperature. In a complete uncertainty budget, a number of temperatures reflecting the range of 
measurement should be evaluated. Note that these uncertainties correspond to those listed in Table 1. The equation used to 
sum the uncertainties is shown in Equation 5. The MS Excel formulas used to sum these uncertainties are shown in 
Equation 6.  The MS Excel formula contents for rows correspond to the rows of Table 2. For example Row 4 is the 
‘Uniformity’ row and Row 15 is the ‘Spectral Variation’ row. Column E is the ‘Divisor’ column, and Column F is the 
‘100°C’ column. 
 
Uncertainties Denot. Type Dist Divisor 100°C 

Target Uncertainties      

Calibration Uncertainty u1 B normal 2 0.284 

Stability (long term) u2 A normal 2 0.050 

Uniformity u3 B rectangular √3 0.145 

Noise u4 A normal 2 0.109 

Display Resolution u5 A rectangular √3 0.005 

IR Thermometer Uncertainties     

Readout Resolution u6 A rectangular √3 0.050 

Ambient Temperature u7 B rectangular √3 0.030 

Noise u8 A normal 2 1.000 

Atmospheric Losses u9 B normal 2 0.010 

Angular Displacement u10 B rectangular √3 0.030 

Background Temperature u11 B rectangular √3 0.116 

Spectral Variation u12 B normal 2 0.240 

Combined Standard 
Uncertainty uc k=1 normal  0.549 

Combined Expanded 
Uncertainty U k=2 normal  1.097 

Table 2. Example Uncertainty Budget 
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Equation 5: Combined Uncertainty for Example Uncertainty Budget 
 
=2*SQRT(SUM((F3/E3)^2+(F4/E4)^2+(F5/E5)^2+(F6/E6)^2+(F7/E7)^2+(F9/E9)^2+(F10/E10)^2+(F11/E11)^2+ 
(F12/E12)^2+(F13/E13)^2+(F14/E14)^2+(F15/E15)^2)) 
 
Equation 6: MS Excel Implementation of Equation 6.5 
 
Imager uncertainty budgets should be similar to the one shown in Table 2. However, an additional uncertainty should be 
considered. Most imagers undergo a non-uniformity correction (commonly called NUC). This helps to correct for 
temperature uniformity errors across the display of the imager. However, this correction does not completely solve non-
uniformity problems. This problem has been documented in a previous paper [Thomas et al]. 
 
This uniformity uncertainty is rather easy to evaluate experimentally. An object of known temperature can be measured at 
different parts of the display that is used to measure temperature. The results of one such test is shown is Figure 4. In this 
test two objects of similar temperature were placed next to each other. A thermographic image was taken. Then the objects’ 
positions were switched and a second thermographic image was taken. The uniformity is evaluated by taking the sum of the 
temperatures measured in a given position, then subtracting the sum of the temperatures in the center of the display. When 
this result is divided by two, the difference in measured temperature on the display is given, since the difference in the 
temperature of the two objects cancels. This method is similar to a uniformity test for dry-wells outlined in an accepted 
standard [EA 10/13]. An example of the math involved is shown in Equation 7. 
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Figure 4. Imager Uniformity Example at 390°C 
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Equation 7: Imager Uniformity Calculation 
 

Conclusion 
 
Constructing an uncertainty budget for IR temperature measurement is not a trivial task. However, by paying attention to 
the uncertainties involved in a measurement an uncertainty budget is a powerful tool. A properly constructed uncertainty 
budget will give knowledge of the accuracy for a given measurement. It will also portray this accuracy to colleagues and 
auditors. 
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